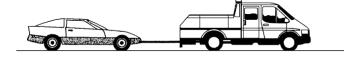

Mechanics 1 Connected Particles

Two particles, A and B, have masses 12 kg and 8 kg respectively. They are connected by a light inextensible string that passes over a smooth fixed peg, as shown in the diagram.


The particles are released from rest and move vertically. Assume that there is no air resistance.

A block, of mass 12 kg, lies on a horizontal surface. The block is attached to a particle, of mass 18 kg, by a light inextensible string which passes over a smooth fixed peg. Initially, the block is held at rest so that the string supports the particle, as shown in the diagram.

The block is then released.

A car, of mass 1200 kg, is connected by a tow rope to a truck, of mass 2800 kg. The truck tows the car in a straight line along a horizontal road. Assume that the tow rope is horizontal. A horizontal driving force of magnitude 3000 N acts on the truck. A horizontal resistance force of magnitude 800 N acts on the car. The car and truck accelerate at $0.4\,\mathrm{m\,s^{-2}}$.

(a)		By forming two equations of motion, show that the magnitude of the accele each particle is $1.96 \mathrm{ms^{-2}}$.	(5 marks)
(b)		Find the tension in the string.	(2 marks)
(c)		After the particles have been moving for 2 seconds, both particles are at a h 4 metres above a horizontal surface. When the particles are in this position string breaks.	
	(i)	Find the speed of particle A when the string breaks.	(2 marks)
	(ii)	Find the speed of particle A when it hits the surface.	(3 marks)
	(iii)	Find the time that it takes for particle B to reach the surface after the string Assume that particle B does not hit the peg.	breaks. (5 marks)
(a)		Assuming that the surface is smooth, use two equations of motion to find the magnitude of the acceleration of the block and particle.	ie (4 marks)
(b)		In reality, the surface is rough and the acceleration of the block is $3ms^{-2}.$	
	(i)	Find the tension in the string.	(3 marks)
	(ii)	Calculate the magnitude of the normal reaction force acting on the block.	(1 mark)
	(iii)	Find the coefficient of friction between the block and the surface.	(5 marks)
(c)		State two modelling assumptions, other than those given, that you have made answering this question.	le in (2 marks)
(a)	Fi	nd the tension in the tow rope.	(3 marks)
(b)	Sł	now that the magnitude of the horizontal resistance force acting on the truck	is 600 N. (4 marks)
(c)		fact, the tow rope is not horizontal. Assume that the resistance forces and iving force are unchanged.	the
	Is	the tension in the tow rope greater or less than in part (a)?	
	Ex	xplain why.	(2 marks)

Qu Refs...

- AQA M1, June 2010, Question 6
- AQA M1, June 2012, Question 5
- AQA M1, June 2007, Question 4