Essential Notes on Mechanics

For the new A level syllabus

Common Modelling Assumptions

Ignore air resistance Force of gravity acts constantly

Inextensible	\Rightarrow	no stretching		
Thin	\Rightarrow	no diameter or thickness		
Light	\Rightarrow	no mass		
Rigid	\Rightarrow	no bending		
Smooth	\Rightarrow	no friction		
Particle	\Rightarrow	no size		

Newtons Laws of Motion

- 1. Every particle continues in a state of uniform motion unless acted upon by an external force.
- 2. The net force is equal to the rate of change of momentum. F = ma
- 3. Every action has an equal and opposite reaction

Suvat

$$v = u + at$$
 (no s)

$$s = ut + \frac{1}{2}at^2 \qquad (\text{no } u)$$

$$s = vt - \frac{1}{2}at^2 \qquad (no \ v)$$

$$s = \frac{1}{2}(u+v)t \qquad (\text{no } a)$$

$$v^2 = u^2 + 2as \qquad (no t)$$

Equilibrium

Result force equals zero

Friction

$$F = \mu R$$
 where $0 < \mu < 1$

Pulleys and Tension

 $U_{\rm H}\,$ acts constantly $U_{\rm V}\,$ subject to $\,g\,\,{\rm ms}^{\text{-2}}\,$ Care required with stating which is positive vertical direction.

Vectors

$$r = ai + bj$$
 $|r| = \sqrt{a^2 + b^2}$ $\tan \theta = \frac{b}{a}$

Projectiles

Calculus in Kinematics

↓ Displacement ਥ		x	x	←_
← Differentia	Velocity	$v = \frac{dx}{dt}$	$v = \dot{x}$	ntegrate
	Acceleration	$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$	$a = \dot{v} = \ddot{x}$	1

Note that when t = 0, displacement = 0.

When integrating, use initial/boundary conditions to find the *c* value.

$$r = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$v = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$$
$$a = \frac{d^2x}{dt^2}\mathbf{i} + \frac{d^2y}{dt^2}\mathbf{j} + \frac{d^2z}{dt^2}\mathbf{k}$$
$$|v| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$$

Moments (turning forces, torque, Nm)

Anticlockwise = +ve Clockwise = -ve

 $Moment = perpendicular \ distance \times force = |F| \cdot d$

Forces through the pivot exert no moment/torque.

Most problems involve finding resultant (translational) force and resultant moment around one or more points, then using these to determine unknown forces or distances. It is possible to use resultant force and resultant moment to calculate position of resultant moment.

Equilibrium \Rightarrow

resultant moment = 0 (no turning effect)

and

resultant force = 0 (no translational effect)