Parametric Integration

Find $\int y d x$ between $t=0$ and $t=2 \pi$, for the parametric equations below...

$$
x=4 \sin t \quad y=3 \cos t
$$

$$
\int y d x=\int 3 \operatorname{cost} d x
$$

$$
\begin{aligned}
& x=4 \sin t \\
\Rightarrow & \frac{d x}{d t}=4 \cos t \\
\Rightarrow & d x=4 \cos t d t
\end{aligned}
$$

$$
\begin{aligned}
& \int y d x=\int 3 \cos t d x \\
& =\int 3 \cos t \times 4 \cos t d t \\
& =12 \int \cos ^{2} t d t
\end{aligned}
$$

$$
\cos 2 t=2 \cos ^{2} t-1 \Rightarrow \cos ^{2} t=\frac{\cos 2 t+1}{2}
$$

Integration becomes...

$$
\begin{aligned}
& 12 \int \cos ^{2} t d t=6 \int \cos 2 t+1 d t \\
& =6\left[\frac{\sin 2 t}{2}+t\right]_{0}^{2 \pi} \\
& =6\left[\left(\frac{\sin 4 \pi}{2}+2 \pi\right)-\left(\frac{\sin 0}{2}+0\right)\right] \\
& =12 \pi
\end{aligned}
$$

Now try these...

1. Find $\int y d x$ between $t=0$ and $t=2 \pi$, for $x=3 \sin t$ and $y=5 \operatorname{cost}$.
2. Find $\int y d x$ between $t=2$ and $t=3$, for the parametric equations below...

$$
x=t+\frac{1}{t} \quad y=t-\frac{1}{t} .
$$

3. Find the area bounded by the x-axis and the curve with parametric equations below between $0 \leq t \leq \frac{\pi}{2}$.

$$
x=\sin t \quad y=\sin 2 t
$$

4. Find the positive integral bounded by the x-axis and the curve with parametric equations below...

$$
x=t-2 \sin t \quad y=1-2 \cos t
$$

5. The trajectory of a ball thrown from the top of a tower is modelled by the parametric equations $x=20 t$ and $y=50+15 t-2 t^{2}$.

Find the area of the region underneath the flight of the ball.

Answers =

1. 15π
2. $\ln \left(\frac{4}{9}\right)+\frac{185}{72}$
3. $\frac{2}{3}$
4. $4 \pi+3 \sqrt{3}$
5.
