Perms \& Combs

- How many arrangements of the letters A B CDE?

$$
5!=5 \times 4 \times 3 \times 2 \times 1=120
$$

n !

- How many arrangements of the letters A A B B C ?

$$
\frac{6!}{2!3!}=\frac{720}{12}=60
$$

$$
\frac{n!}{p!q!r!} \quad \text { where } p, q, r \text { are the number of repeat letters }
$$

- How many arrangements of A B C D E so that A \& B are together? (Treating $A \& B$ as one unit with 2 ! arrangements of their subset)

$$
4!2!=48
$$

Permutations - order matters, so EACH possible selection will be rearranged in all possible orders.

- How many arrangements of 4 letters from 7 different letters?

$$
{ }^{7} p_{4}=840
$$

Combinations - order doesn't matter, so each possible selection counts only once.

- How many ways to choose 11 players from a squad of 16 ?

$$
{ }^{16} c_{11}=4368
$$

- Number of ways to choose 11 from 16 is same as number of ways to choose 5 from 16

$$
\begin{aligned}
& { }^{16} c_{11}={ }^{16} c_{5} \\
& { }^{n} c_{r}={ }^{n} c_{(n-r)}
\end{aligned}
$$

- 2 Sets - How many ways to choose 2 from 10 and 3 from another set of 8 ? (The `and \Rightarrow multiply' rule)

$$
{ }^{10} c_{2} \times{ }^{8} c_{3}=45 \times 56=2520
$$

- Multiple options - How many ways to choose 2 from 10 and 3 from another set of $8, \mathbf{O R}, 4$ from 10 and 1 from 8 ? (The 'or \Rightarrow add' rule)

$$
\left({ }^{10} c_{2} \times{ }^{8} c_{3}\right)+\left({ }^{10} c_{4} \times{ }^{8} c_{1}\right)=(45 \times 56)+(210 \times 8)=2520+1680=4200
$$

- Probabilities based on selections

Number of selections satisfyingcriteria
Total number of possibleselections
e.g. 10 people in a room. What is the probability that A and B sit next to each other?

Number of selections with A,B next to each other: $\quad 9!\times 2!=725760$
Total number of ways 10 people can sit:
$10!=3628800$
Probability is therefore $725760 / 3628800$

- "What is the permutation for the safe?"

Permutations
${ }^{n} p_{r}$
Order Matters

Combinations
${ }^{n} c_{r}$
Order doesn't matter

