Points of Inflection

A point of inflection is where the gradient (not the graph itself) takes a local max/min value. At a point of inflection, the shape of a graph changes from a concave upwards to a concave downwards curve, or vice versa.

Usually, at a point of inflection, $\frac{d^{2} y}{d x^{2}}=0$, but this is not always the case.
Points of inflection can be stationary points of inflection or non-stationary points of inflection.

Stationary Point of Inflection

In the example below, where $y=x^{3}$, there is a stationary inflection point.
l.e. at the point of inflection, the gradient also zero and $\frac{d y}{d x}=0$.

Non-Stationary Point of Inflection

In the example below, where $y=x+\frac{1}{x}$, there is a non-stationary inflection point.
I.e. at the point of inflection, the gradient is not zero and $\frac{d y}{d x} \neq 0$.

	$\frac{d y}{d x}=0$	$\frac{d y}{d x} \neq 0$
$\frac{d^{2} y}{d x^{2}}>0$	Stationary point, minimum	
$\frac{d^{2} y}{d x^{2}}=0$	Stationary point of inflection	Non-stationary point of inflection
$\frac{d^{2} y}{d x^{2}}<0$	Stationary point, maximum	

