Classic Mathematical Proofs

Geometric	Direct	Induction	Contradiction	Misleading
Pythagoras	Sum of consecutive squares are odd	Euler's formula for polyhedra	$\sqrt{2}$ is irrational	1=2
Angles in triangle	$(a+b)(a+b) = a^2 + 2ab + b^2$	Sum of n integers $=\frac{n}{2}(n+1)$	Primes continue to infinity	
Triangle numbers	Pythagorean triples		Bridges of Konigsberg	
Angles in semicircle	$0.\dot{9} = 1$			
$(a+b)(a+b) = a^2 + 2ab + b^2$				