Pythagorean Triples

Appendix 5. Fuclid’s Proof That There Are an Infinite
Number of Pythagorean T'riples

A Pythagorcan wriple is a sct ol three whole numbers, such that one
number squared added to another number squared equals the third
number squared. Euclid could prove that there are an infinite number of
such Pythagorean triples.

Fuclid’s proof begins with the observation that the difference between

successive square numbers 1s always an odd number:
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Every single one of the mfinity of odd numbers can be added w0 =
particular square number to make another square number. A fraction of
these odd numbers are themselves square, but a fraction of infinity 1s alse
infinite.

Therefore there are also an mfinity of odd square numbers which ca=
be added to one square to make another square number. In other words
there must be an infinite number of Pythagorean triples.



The Axioms of Arithmetic

Appendix 8. The Axioms of Arithmetic
The following axioms are all that are required as the foundaniom for dis
elaborate structure of arithmetic:
1. For any numbers m, n
mt+n=n+m and mn= nm.
2. For any numbers m, n, £,
m+n)y+k=m+(n+k) and (mn)k=mnk.
3. For any numbers m, n, &
m{n + k) = mn + mk.
4. There is a number 0 which has the property that, for anv num=fe =
n+0=n
5. There is a number 1 which has the property that, for anv nuier =
nx1=n
6. For every number #, there is another number £ such that
n+k=0.
7. For any numbers m, n, £,
ifk=0 and kn=#km, then m=n

From these axioms other rules can be proved. For example. by ruzmmands

applying the axioms and assuming nothing else, we can rigoroms gerr
the apparently obvious rule that

fm+k=n+k then m=n
To begin with we state that

m+k=n+*k

Then by Axiom 6, let / be a number such that, £+ /= 0, so
m+k)+i=m+k+.
Then, by Axiom 2,
m+Ek+)=n+k+1).
Bearing in mind that £ + [ = 0, we know that
m+0=n+0.
By applying Axiom 4, we can at last declare what we set out to prove:

m=n.



Rational, Irrational, Rational

2.1.3 Theorem

Between any two distinct rationals there is an irrational.

Proof
Suppose that m/n < p/q. This gives p/g — m/n > 0. Hence

and, since \/5/2 <1,

ﬂ+ﬁ(£_£ﬁ)<m+(p m)= P
n 2 \g n

Thus the irrational

(e

n 2 q_;

lies between the rationals m/n and p/q.



The Axioms of Arithmetic

2.2.1 The axioms of arithmetic

Al a+(b+c)=(a+b)+c
A2 a+b=b+a
A3  There exists a unique element 0 in R satisfying a + 0 =a

A4 For any a in R, there exists a unique element x in R
satisfying g +x =0

A5 a-(b-c)=(a"b)-c
A6 a-b=b-a

A7 There exists a unique element 1 in R, 1+#0, satisfying
a*l=a

A8 For any a in R, a # 0, there exists a unique element y in
R satisfyinga-y =1

A9 a-(b+c)=a‘b+a-c

Notes

(1) Each axiom holds for all g, b, c € R.

(2) Any set satisfying A1-A9 is called a field.

(3) The x in A4 is called the negative of a and is usually denoted
by (—a).

(4) The y in A8 is called the reciprocal of a and is written as 1/a
ora !,

(5) Axioms Al and A5 allow us to omit brackets in expressions
suchasa+b+cora-b-c-d.

(6) The axioms give names to only two particular elements of R,
namely 0 and 1, whose roles are defined in A3 and A7.

(7) 07! is not defined — see A8. In fact, no such element exists by
Example 1(a) below.

(8) Subtraction can be defined by a—b=a+ (—b).
(9) Division can be definedbya+b=a: (b1, b+0.

It is assumed that the reader is quite familiar with axioms Al1-A9.
From these axioms, many further algebraic properties can be deduced.
Since these axioms are so basic, several elementary consequences are
needed first.




BEE EXAMPLE?2
Prove the algebraic identity (a — b) * (a + b) = a® — b>.

Solution
(@a—=b):-(a+b)=(a+ (=b)): (a+b) using Note (8)

=(a+(=b))ra+(a+(=b)-b
by A9

=a-(a+ (=b))+b-(a+ (—b))
by A6

=ara+a(—b)+b-a+b-(-b)
by A9 and Al

=aa+(—(a'b)+b-a+(-(b-b))
using Example 1(b)

=a'a+(ab+(—(a-b))+ (—(bb)))
by A6, A2 and Al

=(a+a+0)+ (—(b-b)) by Adand Al
=a-a+ (—(b-b)) by A3
= g% — b? using Note (8) H



Direct Proof Questions

Prove that the result of multiplying two odd
numbers together is always odd.

Prove that the sum of two consecutive square
numbers is always odd.

Prove that, for any prime number p greater than 3,
p? — 1 is always a multiple of 24.

Prove the following identities:
(x+3)?*+ (x—y)* =2(x* +y%)
(x+¥)* — (x —y)* = 4xy
x3+y3=((x+y)(x?—xy +y?)

X2 —y? = (x —y)(x* +xy +y?)



