V2 is Irrational

Appendix 2. Euclid’s Proof that V2 is Irrational
|
Euclid’s aim was to prove that V2 could not be written as 2 —= s~y
Because he was using proof by contradiction, the first step was 1o e
that the opposite was true, that is to say, that V2 could be writtem 2= . mmc
unknown fraction. This hypothetical fraction is represented by £ £ - =
p and g are two whole numbers.
Before embarking on the proof itself, all that is required = & i
understanding of some properties of fractions and even numbers.

(1) If you take any number and multiply it by 2, then the new mam wr
must be even, This is virtually the definition of an even number.

(2) Ifyouknow that the square of a number is even, then the number itself
must also be even.

(3) Finally, fractions can be simplified: 3 is the same as %; just divide the
top and bottom of 3% by the common factor 2. Furthermore, £ is the same
as (J;, and in turn ¢ is the same as 2. However, 2, cannot be simplified any
further because 2 and 3 have no common factors. It is impossible to keep
on simplifying a fraction forever.

Now, remember that Euclid believes that V2 cannot be written as a
fraction. However, because he adopts the method of proof by
contradiction, he works on the assumption that the fraction p/g does exist
and then he explores the consequences of its existence:

V2 = ply.

continues overleaf...



If we square both sides, then
2= p*q*

"This equation can easily be rearranged to give

Now from point (1) we know that 4* must be even. Furthermore, from
point (2) we know p itself must also be even. But if p is even, then it can be
written as 2m, where m is some other whole number. This follows from
point (1). Plug this back into the equation and we get

2¢% = (2m)* = 4m”.

Divide both sides by 2, and we get

¢ = 2m*.

But by the same arguments we used before, we know that ¢2 must be even,
and so ¢ itself must also be even. If this is the case, then ¢ can be written
as 2n, where n is some other whole number. If we go back to the
beginning, then

V2 = plg = 2m/2n.

The 2m/2n can be simplified by dividing top and bottom by 2, and we s
V2 = m/n.

We now have a fraction m/n, which 1s simpler than p/q.

However, we now find ourselves in a position whereby we cam -
exactly the same process on m/n, and at the end of it we will genessar
even simpler fraction, say g/t This fraction can then be put thromsh
mill again, and the new fraction, say e/f, will be simpler still. We cam-
this through the mill again, and repeat the process over and over _-.
with no end. But we know from point (3) that fractions camme
simplified forever. There must always be a simplest fraction, bus
original hypothetical fraction p/g does not seem to obey thes
Therefore, we can justifiably say that we have reached a contrade=
V2 could be written as a fraction the consequence would be absusd
50 it is true to say that V2 cannot be written as a fraction. Therefore
an irrational number.



V2 is Irrational

makes things whiter!

The argument is in fact a classic example of proof by
contradiction. We begin, in other words, by supposing
that V2 can be written as a fraction. Then, by reducing
that fraction to its ‘lowest terms’, i.e. by cancelling out
any common factors, we obtain \2 = m/n, where m and n
are whole numbers which have no common factor.

To see a contradiction develop, begin by squaring
both sides to obtain 2 = m*/n’, so that m> = 2n*. This
means that 77 is twice a whole number, so /n” is even. It
follows that m must be even (for if m were odd, m” would
be odd, as odd X odd = odd).

Now , as m11s even, it can be written as 2r, where ris a
whole number. The equation m’ = 21’ can then be
rewritten as 4° = 257, i.e. n* = 2r2. So i’ is even, and by
the same argument as before, n nmust be even.

And there is the contradiction: m and n started by
having no common factor, yet must now have a common
factor of 2, because they are both even.

The only way out of this absurd situation is for the
original assumption — that 2 can be written as a ratio of
two whole numbers — to be false.

So V2 is an irrational number. And there are plenty of
others; there is nothing exceptional or peculiar about
them. In fact, there are ‘more’ irrational numbers than
there are rational ones, though what this statement
means, exactly, takes a bit of thinking about, as the two
things we are comparing are both infinite.



Infinitely Many Primes

For a deeper example of proof by contradiction we
turn to the subject of prime numbers.

Now, a prime number is a whole number, larger than
1, which is divisible only by [ and itself. So

2,3,5,7,11,13,17,19. ..

are all prime, but 15, for example, is not, because it is
divisible by 3 and by 5.

(89

3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 6l 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541

The first 100 prime numbers.

Every whole number greater than 1 is either prime or
can be written as a product of primes. So, for instance, 17
is prime but 18 can be written as 2 X 3 X 3. In this sense,
primes are the ‘building blocks™ out of which other whole
numbers can be created by multiplication.

As we proceed up the list of whole numbers, primes
occur quite frequently at first, but less frequently later
on. Thus 25% of the numbers up to 100 are prime, but
the corresponding figure for numbers up to 1,000,000 is
just 7.9%.

An obvious question, then, is: does the list of primes
come (o a complete stop somewhere, or does it go on for
ever?

And Euclid discovered the answer: there are infinitely
many prime numbers.

How, then, did he prove it?



"“Jou WANT PROOF? L1 caivE. You PROOE!"

The answer is that he turned to proof by contra-
diction.

He began, then, by supposing that the number of
primes is finite, in which case there will be some /argest
prime number, which we will call p. The complete list of
primes will then be

2,3,5, 7, 11,13, .., p.

So far, so good. Even straightforward, you might say.
But the next step is an inspired one.

Euclid’s ingenious idea was to consider the number
N=2X3X5X...Xp+1

i.e. the number obtained by multiplying all the primes
together and adding 1.

Now. this number is certainly greater than p, and as p
is the largest prime this new number N cannot be prime.
It must therefore be possible to write it as a product
of primes, i.e. it must be divisible by at least one prime
number.

But it isn’t; if you divide N by any prime number from
thelist 2, 3,5, ..., p voualways get a remainder of 1.

We have arrived at a contradiction, then, and the only
way out is for the original hypothesis to be wrong; the
number of primes cannot be finite - it must be infinite.



Bridges of Konigsberg

The basic idea is to prove that some proposition
1s true by exploring the possibility that it is false, and
then showing that this would lead to a contradiction or
nonsense of some kind. So the proposition can’t be false,
and the only possibility then left is that it is true.

This whole line of argument is sometimes called the
‘indirect’ method of proof, or reductio ad absurdum.

As a first example, consider the so-called Konigsberg
Bridge Problem, which came to the attention of the great
Swiss mathematician Leonhard Euler in 1736.

At the time, Konigsberg was a town in East Prussia,
divided by the River Pregel into several parts which were
connected by seven bridges.

The citizens of Konigsberg crossed these bridges on
their long, leisurely Sunday afternoon walks. And
they were vexed — so the story goes — by one particular
question: can you take a walk in Konigsberg in such a
way that you cross each of the seven bridges once and
only once?

Now, at first sight we are faced with the tedious and
daunting task of considering all the possible routes in
turn, and showing that none of them works. But, as Euler
showed, there is a clever way of circumventing all this.
And one convincing way of presenting the argument is
as a proof by contradiction.

continues overleaf...



Suppose, then, that it is possible. We start, in other
words, in one of the four regions A, B, C, D and end up
at one of them (possibly the same one), having crossed
each of the seven bridges exactly once.

Now, it follows immediately that there will be at least
two regions which are neither at the beginning nor at the
end of the walk. Consider one of these regions. We visit it
a certain number of times and leave it an equal number
of times, and as we cross cach bridge exactly once it
follows that there must be an even number of bridges
leading from this region.

But no region in the Konigsberg figure above has this
property: the island A has 5 bridges leading from it,
while the regions B, C and D all have 3 each.

So you can’t take a walk in Koénigsberg in this
particular way.

At least, you couldn’t in 1736. As I understand it, the
situation has now changed; for Konigsberg is now
Kaliningrad, and has only five bridges, most of them the
result of rebuilding after the Second World War.



