Proof by Induction

Climbing the ladder

In mathematics

Prove that you can reach the bottom
rung of the ladder.

Prove that statement is true for n =
1.

Prove that, from any rung on the
ladder that you may be on, you can
reach the next rung of the ladder.

Prove that for any value of n, such as
k, for which the statement is true,
then it will also be true for k + 1.

State that you have demonstrated
that you can climb up the ladder ad
infintum.

Conclude the argument.

true for
n=1

Y

if true for n=p

then true for n=p+1




Two More Examples

A sequence is defined by u_,, =4u -3, u, =2.
n+1 1 1

Prove that u, = 41 41,

SOLUTION
Stepl  Forn=1,u = 49+ 1 =1+ 1=2,sothe resultis true for n= 1.

Step2  Assume that the result is true for 1 = k, so that u, = 41 41,
We want to prove that it is true for n=k+ 1, i.e. that u,_, = 4y + 1,

Forn=k+1,u,  =4u -3

=4(4F1 4 1)-3
=4x4l44-3
=4F+1

Step 3 Soif the result is true for n = k, then it is true for n =k + 1.
Since it is true for # = 1, then it is true for all n = 1 by induction.

Prove that u, =4"+6n-1is divisible by 9 for all n = 1.

SOLUTION
Stepl  Forn=1,u =4+6-1=9,s0 it is true when n = 1.
Step 2 We want to show that

u, is divisible by 9 = u,, | is divisible by 9.

Now uy, | =451 +6(k+1)-1
=4 x4+ 6k+5
=4(u,—6k+ 1) +6k+5
=41, — 18k + 9
=du, - 9(2k-1)

Substituting
4= u,—6k+1.

Step3  Therefore if 1, is a multiple of 9 then so is u,_,.
Since u, is a multiple of 9, u isa multiple of 9 for all n = 1.



Proof by Induction

This form of proof can be compared with the process of climbing a ladder:

if we can

1 reach the bottom rung

and

2 get from one rung to the next,

then we can climb as far as we like up the ladder (figure 5.1).

Figure 5.1

The corresponding steps in the proof are

1 showing that the conjecture is true for 1= 1 (though in fact you checked it up
ton=206)

2 showing that if the conjecture is true for any particular value of n, n = k say,
then it is true for the next value, n =k + 1.

This method of proofis called proof by mathematical induction (or just proof by
induction).

The method of proof by induction can be summarised as follows.

To prove a result by induction you must take three steps.

Step 1 Prove that it is true for a starting value, such as n= 1.
Step2  Prove that if it is true when n = k, then it is true when n =k + 1.
Step3  Conclude the argument.

Step 1 is usually a simple verification whereas Step 2 can be quite complicated, so
there is a danger that you will concentrate on Step 2 and forget about Step 1 — but
it is no use being able to climb the ladder if you cannot reach the bottom rung!



Sums of Squares

Prove that, for all positive integers #,

12422432 +...+n?= —én(n+ DR2n+1).

SOLUTION

Stepl Whenn=1, LHS. =1=1
R.H.S. = % X1X2x3=1.

Step 2 Assume that the result is true when #n = k, so that
124224324 ...+ k2= %k(k+ 12k +1).
We want to prove that the result is true for n =k + 1, i.e. that

PP+22+43%+ .+ 2+ (k+1)?=2k+1D)((k+ D+ DQ(k+1)+1)

Il

(k+1)(k+2)(2k+ 3).

Using the assumed result for n = k gives

P24+224+3% 4 L+ K2+ (k+ 1)2= s k(k+ 1)k + 1) & (k+1)2
1
6

Add (k+1)?
to each side.

(k+ D[k2k+ 1) +6(k+1)]

S(k+1)(2R + k+ 6k +6)

Take out = —é—(k +1)as
a factor — this is part of
the target expression.

= £ (k+ 1)K + 7k +6)

= L(k+ 1)(k+2)(2k + 3).

Step 3 So if the result is true when #n = k, then it is true when n =k + 1.
As itis true for n = 1, it is true for all # = 1 by induction.



Sums of Integers

Appendix 10. An Example of Proof by Induction

Mathematicians find it useful to have neat formulae which give the s
of various lists of numbers. In this case the challenge is to find 2 formmmih
which gives the sum of the first n counting numbers.

For example, the sum of just the first number is 1, the sum of e frw
two numbers is 3 (i.e. 1 + 2), the sum of the first three numbers =6 -
+ 2 + 3), the sum of the first four numbers is 10 e, I + 2 = 3 = £ s
$O on.

A candidate formula which seems to describe this pattern

Sum(n) = daln + 1).

In other words if we want to find the sum of the first 7 numbers. fuwm
simply enter that number into the formula above and
answer,

Proof by induction can prove that this formula works for every s
up to infinity.

The first step is to show that the formula works for the first case ==,
This is fairly straightforward because we know Ehdl Lh— sum

WOTE ouE I

the correct result.

Sum(n) = Jn(n + 1)
Sum(l) = %x Ix{1+1
Sum(1) =% x 2
Sum(1) =

The first domino has been toppled.

The next step in proof by induction is to show that if the formula is true
for any value =, then it must also be true for n + 1. If

Sum(n) = bafn + 1),
then,
Sum(n + 1) = Sum(n) + (n + 1)
Sum(n + 1)=4n(n + 1) + (n + 1).
After rearranging and regrouping the terms on the right, we get
Sump+ 1)=1n+ 1) [+ 1)+1].

What is important to note here is that the form of this new equation is
exactly the same as the original equation except that every appearance of
n has been replaced by (n + 1).

In other words, if the formula is true for n, then it must also be true for
n + 1. If one domino falls, it will always knock over the next one. The
proof by induction is complete.



Sums of Integers

Sometimes in mathematics, an infinite process can be
involved in the actual structure of the logical reasoning
itself. This happens, for example, with a powerful method
called proof by induction.

The general idea of this 1s not unlike a railway train; a
lot of coaches are coupled together, an engine pulls on
the first one, this coach then pulls on the second, and so
on until the whole train moves.

Here’s an example. There is a simple formula for the
sum of the first # whole numbers:

]+2+3+4+...‘l—lIZ]EI”I(I?ﬂL]).

According to this formula, then, the sum of the first 10
whole numbers is L— X 10 X 11 = 55, and it is easy to
check by direct summation that this i1s correct. But how
can we prove that the formula is correct for any whole
number n?

Well, suppose for a moment that we knew 1t to be true
for some particular whole number n = p. If that were so,
we could then deduce, simply by adding one more term,
that the sum of the first p + 1 whole numbers must be:

1+2+3+4+ . +p+(pt)=1pp+1)+ (p+]).

And there 1s something very interesting about the right-
hand side of this equation: with a little algebra we can
rewrite it in the form +(p+1) (p+2).

But this is just the original formula <n(n+1) with
n=p+1instead of n = p! &

We have shown, in other words, that if the formula
happened to be true for one particular whole number 7,
then it would be true for the next one as well.

At this stage we have, so to speak, coupled all the
coaches, and the final step is to start the engine.

And to do this, we simply observe that the formula
certainly works when n = 1. because the ‘sum’ then has
only one term, [, and 1?n(nJr 1) = % X 1 X 2, which s,



true for
n=1

Y A

if true for n=p
then true for n=p+1

Y

The idea of proof by induction.

indeed, 1. From what we have just shown, then, the
formula must also be true for n = 2 as well, and, in the
same way, because it is true when n = 2 it must also be
true when n = 3, and so on.

So the sum of the first » whole numbers 1s %I’l(l’H‘ 1),
for all positive whole numbers .

And while there are other, equally attractive, ways of
proving this particular result, the whole idea of proof by
induction is a very general one, and finds application,
from time to time, in countless different branches of
mathematics, even at the highest level.



Euler’s Formula for Polyhedra

Much ado about knotting
Euler’s Formula for Polyhedra

marmber of number of number of
faces edges vertices

What does it say?

The numbers of faces, edges, and vertices of a solid are not
independent, but are related in a simple manner.

Why is that important?

It distinguishes between solids with different topologies using
the earliest example of a topological invariant. This paved
the way to more general and more powerful techniques,
creating a new branch of mathematics.

What did it lead to?

One of the most important and powerful areas of pure
mathematics: topology, which studies geometric properties
that are unchanged by continuous deformations. Examples
include surfaces, knots, and links. Most applications are
indirect, but its influence behind the scenes is vital. It helps us
understand how enzymes act on DNA in a cell, and why the
motion of celestial bodies can be chaotic.



Topology is often characterised as ‘rubbei-sheet geometry’ because it is the
kind of geometry that would be appropriate for figures drawn on a sheet x
elastic, so that lines can bend, shrink, or stretch, and circles can be
squashed so that they turn into triangles or squares. All that matters ®
continuity: you are not allowed to rip the sheet apart. It may seem
remarkable that anything so weird could have any importance, b
continuity is a basic aspect of the natural world and a fundamental
feature of mathematics. Today we mostly use topology indirectly, as mrl‘
mathematical technique among many. You don’t find anything obviousiy‘;
topological in your kitchen. However, a Japanese company did markes 31
chaotic dishwasher, which according to their marketing people cleanes |
dishes more efficiently, and our understanding of chaos rests on topologt_
So do some important aspects of quantum field theory and that iCO!li
molecule DNA. But, when Descartes counted the most obvious features of
the regular solids and noticed that they were not independent, all this was
far in the future.

It was left to the indefatigable Fuler, the most prolific mathematiciam
in history, to prove and publish this relationship, which he did in 1750 amé
1751. I'll sketch a modern version. The expression F—E + V may seem fairv
arbitrary, but it has a very interesting structure. Faces (F) are polygons, s
dimension 2, edges (E) atre lines, so have dimension 1, and vertices (V) ase
points, of dimension 0. The signs in the expression alternate, +—+, wifm
+being assigned to features of even dimension and — to those of (IH‘
dimension. This implies that you can simplify a solid by merging its faces
or removing edges and vertices, and these changes will not alter the
number I'~E+V provided that every time you get rid of a face you alss
remove an edge, or every time you get rid of a vertex you also remove am
edge. The alternating signs mean that changes of this kind cancel out.

Now I'll explain how this clever structure makes the proof work. Figuse
21 shows the key stages. Take your solid. Deform it into a nice roumd
sphere, with its edges being curves on that sphere. If two faces meet along 2
common edge, then you can remove that edge and merge the faces inss
one. Since this merger reduces both Fand £ by 1, it doesn’t change F—E+ 1
Keep doing this until you get down to a single face, which covers almest
all of the sphere. Aside from this face, you are left with only edges amd
vertices. These must form a tree, a network with no closed loops, becaunse
any closed loop on a sphere separates at least two faces: one inside it, the
other outside it. The branches of this tree are the remaining edges of the
solid, and they join together at the remaining vertices. At this stage omnLv
one face remains: the entire sphere, minus the tree. Some branches of thes



m== connect to other branches at both ends, but some, at the extremes,
mrminate in a vertex, to which no other branches attach. If you remove
sme of these terminating branches together with that vertex, then the tree
g=ts smaller, but since both E and V decrease by 1, F-E+V again remains
smchanged.

This process continues until you are left with a single vertex sitting on
zm otherwise featureless sphere. Now V=1, E=0, and F=1. SO F-E+ V=1—

!=1=2. But since each step leaves F-E+ V unchanged, its value at the
meginning must also have been 2, which is what we want to prove.

¥y 21 Key stages in simplifying a solid. Left to right: (1) Start. (2) Merging adjacent faces. (3)
Tre= that remains when all faces have been merged. (4) Removing an edge and a vertex from
e ee. (5) End.

[t's a cunning idea, and it contains the germ of a far-reaching principle.
The proof has two ingredients. One is a simplification process: remove
=ther a face and an adjacent edge or a vertex and an edge that meets it. The
seher is an invariant, a mathematical expression that remains unchanged
whenever you carry out a step in the simplification process. Whenever
these two ingredients coexist, you can compute the value of the invariant
for any initial object by simplifying it as far as you can, and then
samputing the value of the invariant for this simplified version. Because it
= 2n invariant, the two values must be equal. Because the end result is
wmple, the invariant is easy to calculate.

“ow [ have to admit that I've been keeping one technical issue up my
seeve. Descartes’s formula does not, in fact, apply to any solid. The most
fmiliar solid for which it fails is a picture frame. Think of a picture frame
mzde from four lengths of wood, each rectangular in cross-section, joined
at the four corners by 45° mitres as in Figure 22 (lef). Each length of wood
contributes 4 faces, so F=16. Each length also contributes 4 edges, but the
mitre joint creates 4 more at each corner, so E=32. Fach corner comprises
£ wertices, so V=16. Therefore F-E+ V=0.
What went wrong?



Induction Questions 1

A sequence is defined by U =3u,+2,u =2,
Prove by induction that u = 3"—1.

A sequence is defined by u__,

Prove by induction that 1, = 2"+ 1.

= Zun—l, u, = 2.

A sequence is defined by u , =4u -6, u, = 3.
Prove by induction that u = 4"+ 2.

A sequence is defined by u, ,, = ——

(i) Find the values of u,, 1, and u,.
(ii) Suggest a general formula for u,, and prove your conjecture by induction.

A sequence of integers i, 4y, U, ... is defined by
uy=5andu =3u —2"forn=1,
tl i

(i) Use this definition to find u, and u,.
(ii) Prove by induction that u, = 2" + 3" for all positive integers 1.
[MEL part]

A sequence Uy, Uy, U, ... is defined by

_7 _1 2 - =
w=5andu, =5u _ +nforn=2

: . " o
Prove by induction that u = 2n’—4n+ 6 - (%) and for all positive integers #.

[MEIL part]

Prove, using the method of mathematical induction, that 24*"! + 3 isa
multiple of 5 for any positive integer #.

[MEL part]

Prove that 11772 + 122"*1 is divisible by 133 for n = 0.

; . -1 -4
You are given the matrix A = ( )

1 3/
(i) Calculate A2 and AS.

(ii) Show that the formula A" = (1 —-2n —4n

n 1+2n
value of A and your calculations for n=2 and n = 3.

) is consistent with the given

(iii) Prove by induction that the formula for A" is correct when 7 is a positive
integer.

[MEL part]



Induction Questions 2

In questions 1 to 12, prove the result given by induction.

1

10

11

12

1+345+...+02n-1)=n?

(This was the first example of proof by induction ever published, by
Francesco Maurolycus in 1575.)

nin+1)

o=

1+243+...+n=

2+224+2+ .+ 27 =2(2"=1)

Y= gnd(nt 1)

k=1

(IX2)+(2%3)+ (X4 + ...+ aln+1)=2n(n+1)(n+2)
kzlﬁxn

Zx T (x#1)

(IX2X3)+(2x3%x4)+...+nln+ 1)(n+2):ﬁn(n+1)(n+2)(n+3)

1

Y Gk+1)=4n(3n+5)

1 1 L __n
3 15 35 7 4n2-1 2n+1

L1 - 1 _ nln+3)
IXx2x3 2x3x4 7 pn+1)(n+2)  4n+ D(n+2)

NN (1) _
(1 22)(1 32)(1 42)”'(1 nz)f 2n forn=2
IXI+2Xx21+3 %31+ ... +nxn=(n+ 1) -1
(Remember: n! means n(n—1)(n—-2)...3x2x 1.)




