Rearranging Equations

(harder questions on next page)
Rearrange to make each of the required variables the subject

$V=I R$	$R=$	
$C=2 \pi r$	$r=$	
$A=\pi r^{2}$	$r=$	
$v=u+a t$	$u=$	$a=$
$e=m c^{2}$	$m=$	$c=$
$v^{2}=u^{2}+2 a s$	$u=$	$a=$
$A=\frac{b h}{2}$	$b=$	
$A=\frac{h(a+b)}{2}$	$h=$	$a=$
$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	$R_{1}=$	
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	$c=$	$a=$

Harder Rearranging Equations

(where the term to become the subject features twice in the original equation)

$y=\frac{p t}{p-t}$	$t=$	
$a=\frac{2-7 b}{b-5}$	$b=$	
$\frac{x}{x+c}=\frac{p}{q}$	$x=$	
$p=\frac{n^{2}+a}{n+a}$	$a=$	
$x=\frac{p-q}{p q}$	$p=$	$q=$
$5(x-3)=y(4-3 x)$	$x=$	
$p=\frac{3-2 t}{4+t}$	$t=$	
$R=\frac{a b}{a+b}$	$a=$	$b=$
$y=\frac{x+1}{x+2}$	$x=$	
$p=\frac{3 a+5}{4-a}$	$a=$	

