Rearranging Equations (harder questions on next page)

Rearrange to make each of the required variables the subject

V = IR	R =	
$C=2\pi r$	r =	
$A = \pi r^2$	r =	
v = u + at	u =	a =
$e = mc^2$	m =	c =
$v^2 = u^2 + 2as$	u =	a =
$A = \frac{bh}{2}$	b =	
$A = \frac{h(a+b)}{2}$	h =	a =
$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$	$R_1 =$	
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	c =	a =

Harder Rearranging Equations

(where the term to become the subject features twice in the original equation)

		,
$y = \frac{pt}{p-t}$	t =	
$a = \frac{2 - 7b}{b - 5}$	b =	
$\frac{x}{x+c} = \frac{p}{q}$	x =	
$p = \frac{n^2 + a}{n + a}$	a =	
$x = \frac{p - q}{pq}$	p =	q =
5(x - 3) = y(4 - 3x)	x =	
$p = \frac{3 - 2t}{4 + t}$	t =	
$R = \frac{ab}{a+b}$	a =	b =
$y = \frac{x+1}{x+2}$	x =	
$p = \frac{3a+5}{4-a}$	a =	