Some Common Statistics Distributions

Name of Distribution	Conditions	Parameters	Equation	Graph	Typical Example
Binomial	- Discrete data - Stated (or fixed) number of trials - Only two outcomes; pass or fail - Probability constant throughout - Independence	$X \sim B(n, p)$	$P(X=x)={ }_{x}^{n} p^{x} q^{n-x}$		Find probability of obtaining at least 4 sixes when throwing a die 6 times.
Normal	- Continuous data - Symmetrical distribution	$X \sim N\left(\mu, \sigma^{2}\right)$	$\begin{aligned} & P(X=x) \\ & =\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \end{aligned}$		If mean height is 1.8 m with variance of 0.04 m , find probability that someone is less than 1.7 m tall.
Poisson	- Probability constant throughout - Independence - Two events can't occur at once	$X \sim P o(\lambda)$	$P(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}$		If average number of lions seen on a 1-day safari is 5 , find probabilities of seeing exactly 6 lions and less than 4 lions on the next safari.
Geometric	- Probability constant throughout - Independence - Only two outcomes; pass or fail	$X \sim G(p)$	$P(X=x)=p q^{n-1}$		Find probability of passing driving test on $3^{\text {rd }}$ attempt, assuming probability of passing is $1 / 3$ each time. How about $P(X \geq 3)$?

Uniform (Rectangular)	- Discrete data - Probability constant throughout - Independence	[a, b]	$P(X=x)=\frac{1}{b-a}$		Prove that $\begin{aligned} & E(X)=\frac{1}{2}(a+b) \text { and that } \\ & \operatorname{Var}(X)=\frac{1}{12}(b-a)^{2} \end{aligned}$
Student's T-Squared	- Continuous data - Non-Symmetrical distribution				

