Some Common Statistics Distributions

Name of Distribution	Conditions	Parameters	Equation	Graph	Typical Example
Binomial	 Discrete data Stated (or fixed) number of trials Only two outcomes; pass or fail Probability constant throughout Independence 	$X \sim B(n, p)$	$P(X=x) = \frac{n}{x}p^{x}q^{n-x}$		Find probability of obtaining at least 4 sixes when throwing a die 6 times.
Normal	Continuous dataSymmetrical distribution	$X \sim N(\mu, \sigma^2)$	P(X = x) = $\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		If mean height is 1.8m with variance of 0.04m, find probability that someone is less than 1.7m tall.
Poisson	 Probability constant throughout Independence Two events can't occur at once 	$X \sim Po(\lambda)$	$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$		If average number of lions seen on a 1-day safari is 5, find probabilities of seeing exactly 6 lions and less than 4 lions on the next safari.
Geometric	 Probability constant throughout Independence Only two outcomes; pass or fail 	$X \sim G(p)$	$P(X=x) = pq^{n-1}$		Find probability of passing driving test on 3^{rd} attempt, assuming probability of passing is 1/3 each time. How about $P(X \ge 3)$?

Uniform (Rectangular)	•	Discrete data Probability constant throughout Independence	[a, b]	$P(X=x) = \frac{1}{b-a}$	Prove that $E(X) = \frac{1}{2}(a+b)$ and that $Var(X) = \frac{1}{12}(b-a)^2$
Student's	•	Continuous data			
T-Squared	•	Non-Symmetrical distribution			