Stats 1 Formula

Measure of location: \bar{x} vs μ

Sample	Population
$\bar{x}=\frac{\sum x_{i}}{n}$	$\mu=\frac{\sum x_{i}}{n}$
$\bar{x}=\frac{\sum x_{i} f_{i}}{\sum f_{i}}$	$\mu=\frac{\sum x_{i} f_{i}}{\sum f_{i}}$
$\bar{x}=\frac{\sum\left(x_{i}-a\right)}{n}+a$	$\mu=\frac{\sum\left(x_{i}-a\right)}{n}+a$

Measure of spread:

Sample	Population
$s^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2}$	$\sigma^{2}=\frac{1}{n} \sum(x-\mu)^{2}$
$s^{2}=\frac{1}{n-1}\left\{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right\}$	$\sigma^{2}=\frac{1}{n}\left(\sum x^{2}\right)-\mu^{2}$
$s^{2}=\frac{1}{n-1}\left\{\sum f x^{2}-\frac{\left(\sum f x\right)^{2}}{n}\right\}$	$\sigma^{2}=\frac{1}{n}\left(\sum f x^{2}\right)-\left\{\frac{\left(\sum f x\right)}{n}\right\}^{2}$

$$
S D=\sigma=\sqrt{\mathrm{var}} \quad \Leftrightarrow \quad \mathrm{var}=\sigma^{2}
$$

1 standard deviation includes $2 / 3$ of data
2 standard deviations include 95% of data
3 standard deviations include 'almost all' data
"a quantity expressing by how much the members of a group differ from the mean value for the group"

Probability

Mutually Exclusive

$P(A \cup B)=P(A)+P(B)$ $P(A \cap B)=P(A) \times P(B)$
$P(A \cap B \cap C)=P(A) \times P(B) \times P(C)$

Non-Mutually Exclusive

$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \cap B)=P(A \mid B) \times P(B)$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

Exclusive - no overlap of possible events Exhaustive - all possible events are accounted for

If any of the following are true then they are al/ true \& events are independent.

$$
\begin{array}{cr}
P(A \mid B)=P\left(A \mid B^{\prime}\right) & P(B \mid A)=P\left(B \mid A^{\prime}\right) \\
P(A \mid B)=P(A) & P(B \mid A)=P(B) \\
P\left(A \mid B^{\prime}\right)=P(A) & P\left(B \mid A^{\prime}\right)=P(B)
\end{array}
$$

Binomial distribution (a discrete distribution):

$$
X \sim B(n, p) \quad P(X=x)={ }^{n} C_{x} p^{x} q^{n-x}
$$

Expectation \& Variance of Binomial distribution:

$$
\begin{gathered}
X \sim B(n, p) \\
E(x)=\mu=n p \\
\operatorname{Var}(x)=\sigma^{2}=n p q
\end{gathered}
$$

Normal distribution (a continuous distribution):

$$
Z \sim N\left(\mu, \sigma^{2}\right)
$$

The standard normal distribution: $Z \sim N(0,1)$

$$
\text { Conversion: } Z=\frac{X-\mu}{\sigma}
$$

To find μ and/or σ using given probabilities:

1. Draw a sketch or curve
2. Use the probabilities table to find corresponding z value
3. Use the z value together with the conversion to find μ and/or σ. Finding both μ and σ will involve solving simultaneous equations.

Estimation

Sample mean $=\bar{x}$	Sample variance $=s^{2}$
Unbiased estimator of	Unbiased estimator of
population mean $=\bar{X}$	population variance $=\bar{S}$
(ie the distribution of many sample means)	(ie the distribution of many sample variances)

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \quad \bar{Z}=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)
$$

Confidence Interval	90%	95%	98%	99%	99.8%
z	1.6449	1.9600	2.3263	2.5758	3.0902

$$
\bar{x} \pm \text { "z" } \frac{\sigma}{\sqrt{n}}
$$

Product Moment Correlation Coefficient:

$$
\begin{gathered}
r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}} \\
S_{x y}=\sum x_{i} y_{i}-\frac{1}{n} \sum x_{i} \sum y_{i} \\
S_{x x}=\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2} \quad S_{y y}=\sum y_{i}^{2}-\frac{1}{n}\left(\sum y_{i}\right)^{2}
\end{gathered}
$$

Regression:

$$
\begin{array}{cc}
\text { y on x } & \text { x on y } \\
y=a+b x & x=a^{\prime}+b^{\prime} y \\
a=\bar{y}-b \bar{x} & a^{\prime}=\bar{x}-b^{\prime} \bar{y} \\
b=\frac{S_{x y}}{S_{x x}} & b^{\prime}=\frac{S_{x y}}{S_{y y}}
\end{array}
$$

