Stats 1 Formula

Measure of location: \bar{x} vs μ Population $\bar{x} = \frac{\sum x_i}{n}$ $\mu = \frac{\sum x_i}{n}$ $\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$ $\mu = \frac{\sum x_i f_i}{\sum f_i}$ $\bar{x} = \frac{\sum (x_i - a)}{n} + a$ $\mu = \frac{\sum (x_i - a)}{n} + a$

Measure of spread:

Sample	Population	
$s^2 = \frac{1}{n-1} \sum (x - \bar{x})^2$	$\sigma^2 = \frac{1}{n} \sum (x - \mu)^2$	
$s^{2} = \frac{1}{n-1} \left\{ \sum x^{2} - \frac{(\sum x)^{2}}{n} \right\}$	$\sigma^2 = \frac{1}{n} \left(\sum x^2 \right) - \mu^2$	
$s^{2} = \frac{1}{n-1} \left\{ \sum fx^{2} - \frac{(\sum fx)^{2}}{n} \right\}$	$\sigma^{2} = \frac{1}{n} \left(\sum fx^{2} \right) - \left\{ \frac{(\sum fx)}{n} \right\}^{2}$	
~~	2	

 $SD = \sigma = \sqrt{\text{var}} \quad \Leftrightarrow \quad \text{var} = \sigma^2$

1 standard deviation includes 2/3 of data 2 standard deviations include 95% of data 3 standard deviations include 'almost all' data

"a quantity expressing by how much the members of a group differ from the mean value for the group"

Binomial distribution (a discrete distribution):

$$X \sim B(n, p) \qquad P(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$$

Expectation & Variance of Binomial distribution:

 $X \sim B(n,p)$

$$E(x) = \mu = np$$
$$Var(x) = \sigma^{2} = npq$$

Normal distribution (a continuous distribution):

 $Z \sim N(\mu, \sigma^2)$

The standard normal distribution: $Z \sim N(0, 1)$

Conversion:
$$Z = \frac{X-\mu}{\sigma}$$

To find μ and/or σ using given probabilities:

- 1. Draw a sketch or curve
- 2. Use the probabilities table to find corresponding z value
- 3. Use the z value together with the conversion to find μ and/or σ . Finding both μ and σ will involve solving simultaneous equations.

Estimation

Sample mean = \bar{x}	Sample variance = s^2
Unbiased estimator of	Unbiased estimator of
population mean = \overline{X}	population variance = \overline{S}
(ie the distribution of many sample means)	(ie the distribution of many sample variances)

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\bar{Z} = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

Confidence Interval	90%	95%	98%	99%	99.8%		
z	1.6449	1.9600	2.3263	2.5758	3.0902		
$\bar{x} \pm "z" \frac{\sigma}{\sqrt{n}}$							

Product Moment Correlation Coefficient:

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

$$S_{xy} = \sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i$$

$$S_{xx} = \sum x_i^2 - \frac{1}{n} (\sum x_i)^2$$

$$S_{yy} = \sum y_i^2 - \frac{1}{n} (\sum y_i)^2$$

Regression:

y on x

$$y = a + bx$$

$$a = \overline{y} - b\overline{x}$$

$$b = \frac{S_{xy}}{S_{xx}}$$

$$x = a' + b' y$$

$$a' = \overline{x} - b' \overline{y}$$

$$b' = \frac{S_{xy}}{S_{yy}}$$