
(Not to scale!)
A solar eclipse occurs when the Moon passes between the Earth and the Sun. A total solar eclipse occurs when the path of the Moon produces a relatively small area of shadow on the Earth known as the 'umbra' where it completely covers the face of the Sun. The view of a solar eclipse from this area is quite spectacular.

The Moon completely covers the face of the Sun as its distance and size just happens to be in the same proportions as that of the Sun. This brings about an interesting mathematical situation involving similar triangles concerning the sizes of and distances to the Sun and the Moon. But first some practice...

Task 1

Find the missing sides in each figure below:

25 cm

3 km

45 m

E
0

Task 2
Now try these metric imperial conversions. State which measurements each conversion is for.

Task 3 - The Total Solar Eclipse
If we know three of our Sun/Moon Size/Distance figures then we're able to find the fourth.
a) Use the figures below to show how to find the distance between the Earth and the Sun, and hence distance to the Sun, during a total solar eclipse.

b) Use the figures below to find the diameter of the Sun, and hence the Earth.

c) Using a pinhole camera with a distance of 1 m between the 'camera' and 'projection screen', how large would you expect the image of the Sun to be?

Internet Links

Moon http://en.wikipedia.org/wiki/Moon
Earth http://en.wikipedia.org/wiki/Earth
Sun http://en.wikipedia.org/wiki/Sun, http://sohowww.nascom.nasa.gov/
Solar eclipse http://en.wikipedia.org/wiki/Solar eclipse, http://csep10.phys.utk.edu/astr161/lect/time/eclipses.html Umbra http://en.wikipedia.org/wiki/Umbra NASA's Eclipse page http://eclipse.gsfc.nasa.gov/solar.html Solar eclipse on Youtube http://www.youtube.com/watch?v=XMyqPxFh5Zw Distance to the Sun http://en.wikipedia.org/wiki/Astronomical unit

Mathematics of a Total Solar Eclipse - Answers

Task 1

Task 2

Miles / Kilometres

Inches / Centimetres

Kilograms / Pounds weight

Task 3

a) $x=103,440,000 \mathrm{miles}$
Distance to Sun $=103,464,000$ miles

Actual distance to Sun is $93,500,000$ miles, 10.7% error. Our answer is different as figures were rounded in question. Actual figures: Moons diameter $=0.27$ Earth, distance to Moon = 240,249miles.
b) $x=840,875 \approx 841,000$ miles Using Sun $=109$ Earths, Earth Diameter $\approx 7,700 \mathrm{miles}$.

Actual diameter of Sun is 870,000 miles, 3.5% error. Actual Earth diameter is $8,000 \mathrm{miles}, 3.3 \%$ error.
c) Image around 9 mm diameter. This is calculated using proportional figures of part (b).

