Vectors

Think of a vector like someone giving you directions ("go east for 2 miles") or like a path.
They have a direction and a size.

In the illustration above, the red vector (the one on the left) goes from A to B. We can call it $\underline{\mathbf{a}}$ (or $\overrightarrow{A B}$) and the blue vector (the one on the right) we'll call $\underline{\mathbf{b}}$ (or $\overrightarrow{B C}$).

Vectors are usually written as 'column vectors'. So:

$$
\underline{\mathbf{a}}=\binom{3}{2} \quad \underline{\mathbf{b}}=\binom{1}{-4} \quad \text { In general }\binom{x}{y}
$$

They can also be written in i, j, k notation. So:

$$
\underline{\mathbf{a}}=3 i+2 j \quad \underline{\mathbf{b}}=i-4 j \quad \text { In general } i+j
$$

The vector \mathbf{a} takes us on a path from the coordinates $(1,1)$ to $(4,3)$.
To go the opposite way, i.e. from $(4,3)$ to $(1,1)$ would be $-\underline{\mathbf{a}},($ or $-\overrightarrow{A B})$ or $\binom{-3}{-2}$.

We can add vectors. Imagine following the vectors $\underline{\mathbf{a}}$ and then $\underline{\mathbf{b}}$. We'd begin at $(1,1)$ and end at ($5,-1$). This is a vector of:

$$
\binom{5-1}{-1-1}=\binom{4}{-2}
$$

We get the same result by adding the vectors:

$$
\underline{\mathbf{a}}+\underline{\mathbf{b}}(\text { or } \overrightarrow{A B}+\overrightarrow{B C})=\binom{3}{2}+\binom{1}{-4}=\overrightarrow{A C}=\binom{4}{-2}
$$

The answer, $\overrightarrow{A C},\binom{4}{-2}$, we call the 'resultant vector'. It's the result of doing $\underline{\mathbf{a}}+\underline{\mathbf{b}}$ (or $\overrightarrow{A B}$ then $\overrightarrow{B C}$).

Furthermore, just like adding, it's probably obvious that $\underline{\mathbf{a}}+\underline{\mathbf{b}}=\underline{\mathbf{b}}+\underline{\mathbf{a}}$. They both end up at the same point even though they took different routes there:

This is not so with subtracting, but you already know that. (e.g. $5-2 \neq 2-5$)
We can multiply a vector by a scalar:

$$
2 \underline{\mathbf{a}}(\text { or } 2 \overrightarrow{A B})=2\binom{3}{2}=\binom{6}{4}
$$

Notice same direction, twice the size (hmm, size, see further down).
Obviously we can do combinations of these, such as:

$$
3 \underline{\mathbf{a}}-2 \underline{\mathbf{b}}(\text { or } 3 \overrightarrow{A B}-2 \overrightarrow{B C})=3\binom{3}{2}-2\binom{1}{-4}=\binom{9}{6}-\binom{2}{-8}=\binom{7}{14}
$$

Parallel Vectors

If two vectors are parallel then one is a multiple of the other. The following vectors are all parallel...
$\binom{3}{2}$
$\binom{6}{4}$
$\binom{15}{10}$
$\binom{-3}{-2}$

Magnitude of a Vector (i.e. Size of a Vector) For 'magnitude', read 'size'.
If a vector was a path it may be nice to know how long the path is. Same with vectors, and using Pythagoras we can work this out. The size of $\underline{\mathbf{a}}$, called the 'modulus' of $\underline{\mathbf{a}}$, denoted by $|\underline{\mathbf{a}}|$, is found by:

$$
|\underline{\mathbf{a}}|=|\overrightarrow{A B}|=\sqrt{3^{2}+2^{2}}=\sqrt{13}
$$

Be careful, the size of $\underline{\mathbf{a}}+\underline{\mathbf{b}}$ will be the size of $|(\underline{\mathbf{a}}+\underline{\mathbf{b}})|$, not $|\underline{\mathbf{a}}|+|\underline{\mathbf{b}}|$. I.e.:

$$
|(\underline{\mathbf{a}}+\underline{\mathbf{b}})|=\left|\binom{3}{2}+\binom{1}{-4}\right|=\left|\binom{4}{-2}\right|=\sqrt{4^{2}+-2^{2}}=\sqrt{20}=\sqrt{4} \sqrt{5}=2 \sqrt{5}
$$

*Using knowledge of surds.

The midpoint of a vector is halfway along it, i.e. half of it. E.g. the midpoint of $\underline{\mathbf{a}}$ is:

$$
\frac{1}{2} \underline{\mathbf{a}}=\frac{1}{2} \overrightarrow{A B}=\frac{1}{2}\binom{3}{2}=\binom{1.5}{1}
$$

Using this idea we can find the midpoint of $\underline{\mathbf{a}}+\underline{\mathbf{b}}$, or $\overrightarrow{A C}$ (see how this is handy now?):

$$
\frac{1}{2} \underline{\mathbf{a}}+\frac{1}{2} \underline{\mathbf{b}}=\frac{1}{2}\binom{3}{2}+\frac{1}{2}\binom{1}{-4}=\binom{1.5}{1}+\binom{0.5}{-2}=\binom{2}{-1}
$$

Or using $\overrightarrow{A C}$:

$$
\frac{1}{2}\binom{4}{-2}=\binom{2}{-1}
$$

In pictures:

The purple vector is $\frac{1}{2} \underline{\mathbf{a}}$, the green vector is $\frac{1}{2} \underline{\mathbf{b}}$. The midpoint is $\binom{2}{-1}$ away from A (and $\binom{-2}{+1}$ away from C, i.e. it's in the middle!). Be careful though. You'll see that (2-1) does not represent the coordinates of the midpoint of $\overrightarrow{A C}$. To find the coordinates of the midpoint of $\overrightarrow{A C}$ we need to add $\frac{1}{2} \mathbf{a}+\frac{1}{2} \underline{\mathbf{b}}$ onto $O A$:

$$
\binom{1}{1}+\binom{2}{-1}=\binom{3}{0}
$$

Reducing to vectors in terms of \mathbf{a} and \mathbf{b}.

If we consider vectors as paths, labelled as $\underline{\mathbf{a}}, \underline{\mathbf{b}}$ etc, and we do calculations in terms of $\underline{\mathbf{a}}$ and $\underline{\boldsymbol{b}}$ then we don't actually need the coordinate grid.

The illustration above shows the midpoint of $\overrightarrow{A C}$ as in the previous example but without the grid. We can show that this is the midpoint by the calculation:

$$
\frac{1}{2} \overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}=\frac{1}{2} \overrightarrow{A C}
$$

A new dimension. We can extend our learning of vectors to include 3 dimensional vectors, such as:

$$
\mathbf{p}=\left(\begin{array}{c}
4 \\
-4 \\
3
\end{array}\right) \quad \mathbf{q}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) \quad \text { In general }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { or } i+j+k
$$

We can add, subtract, multiply, find the midpoint etc of these vectors just as we did with the 2D ones.

$$
\begin{gathered}
\mathbf{p}+\mathbf{q}=\left(\begin{array}{c}
4 \\
-4 \\
3
\end{array}\right)+\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{c}
6 \\
-1 \\
7
\end{array}\right) \\
3 \mathbf{p}-2 \mathbf{q}=3\left(\begin{array}{c}
4 \\
-4 \\
3
\end{array}\right)-2\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{c}
12 \\
-12 \\
9
\end{array}\right)-\left(\begin{array}{l}
4 \\
6 \\
8
\end{array}\right)=\left(\begin{array}{c}
8 \\
-18 \\
17
\end{array}\right) \\
\text { Midpoint of } \mathbf{p}+\mathbf{q}=\frac{1}{2}(\mathbf{p}+\mathbf{q})=\frac{1}{2}\left(\begin{array}{c}
6 \\
-1 \\
7
\end{array}\right)=\left(\begin{array}{c}
3 \\
-0.5 \\
3.5
\end{array}\right)
\end{gathered}
$$

3D vectors are helpful because they still operate in the same way as 2D vectors whilst illustrations of them become difficult to understand. The 3 images below show the same vectors, \mathbf{p} and \mathbf{q}, from different points of view:

2D representations of 3D concepts do not work well!
Graphing software, such as Autograph (used here), illustrate 3D vectors well as the POV can be moved, rotated and zoomed to provide a better idea of what's happening. They can
also be fun to play with, although not so much as a Nintendo Wii! (Hmm, computer games, very much based on vectors themselves).

That's it, for GCSE, hurrah!

Or for A level see the next page...

The Unit Vector

The unit vector is the vector in a particular direction and of just one-unit in length. To find this, we take our original vector values and divide by the size of the vector.

$$
3 i+2 j \Rightarrow \frac{3}{\sqrt{13}} i+\frac{2}{\sqrt{13}} j
$$

Angle between a vector and the positive x-axis

To find the angle between a vector and the x-axis, we consider the vector as a triangle

Where...

$$
\tan \theta=\frac{o p p}{a d j}=\tan ^{-1}\left(\frac{2}{3}\right)=33.6^{\circ}
$$

Magnitude-Direction Form (aka Polar Form)

Angles measured anti-clockwise from +ve x-axis.

Component Form	Magnitude-Direction Form
$\binom{3}{2}=3 i+2 j$	$\left(\sqrt{3^{2}+2^{2}}, \tan ^{-1}\left(\frac{2}{3}\right)\right)=\left(\sqrt{13}, 33.69^{\circ}\right)$

For notes on extension material see
http://www.colmanweb.co.uk/Assets/Resources/VectorScalarProducts.doc

