Scalar Products of Vectors

Magnitude of a vector:

$$
\underline{\mathbf{a}}=\binom{x}{y} \quad \Rightarrow \quad|\underline{\mathbf{a}}|=\sqrt{x^{2}+y^{2}}
$$

The size of $\underline{\mathbf{a}}+\underline{\mathbf{b}}$ will be the size of $|(\underline{\mathbf{a}}+\underline{\mathbf{b}})|$, not $|\underline{\mathbf{a}}|+|\underline{\mathbf{b}}|$. I.e.:

$$
\begin{gathered}
\underline{\mathbf{a}}=\binom{3}{2}, \underline{\mathbf{b}}=\binom{1}{-4} \\
|(\underline{\mathbf{a}}+\underline{\mathbf{b}})|=\left|\binom{3}{2}+\binom{1}{-4}\right|=\left|\binom{4}{-2}\right|=\sqrt{4^{2}+-2^{2}}=\sqrt{20}=\sqrt{4} \sqrt{5}=2 \sqrt{5}
\end{gathered}
$$

Scalar Product:

$$
\begin{gathered}
\underline{\mathbf{p}} \cdot \underline{\mathbf{q}}=|\mathbf{p}||\underline{\mathbf{q}}| \cos \theta \\
\underline{\mathbf{p}} \cdot \mathbf{p}=|\mathbf{p}|^{2} \quad \text { (obvious) } \\
\underline{\mathbf{p}} \cdot \underline{\mathbf{q}}=0 \quad \Rightarrow \quad \mathrm{p} \& \mathrm{q} \text { perpendicular } \\
(\mathbf{p}+\underline{\mathbf{q}}) \cdot \underline{\mathbf{r}}=\mathbf{p} \bullet \underline{\underline{r}}+\underline{\mathbf{q}} \cdot \underline{\mathbf{r}} \quad \text { (obvious) }
\end{gathered}
$$

Scalar products in Vector Form:

$\mathbf{j} \bullet \underline{\mathbf{k}}=\underline{\mathbf{k}} \bullet \underline{\mathbf{i}}=\underline{\mathbf{i}} \bullet \mathbf{j}=0$ (perpendicular, obvious)

$$
\begin{aligned}
& \left(\begin{array}{c}
l \\
m \\
n
\end{array}\right) \cdot\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)=l u+m v+n w \\
& l u+m v+n w=|\mathbf{p}||\mathbf{g}| \cos \theta
\end{aligned}
$$

