Core 3 Function Questions

7 (a) The sketch shows the graph of $y = \sin^{-1} x$.

Write down the coordinates of the points P and Q, the end-points of the graph.

(2 marks)

(b) Sketch the graph of
$$y = -\sin^{-1}(x-1)$$
.

(3 marks)

The functions f and g are defined with their respective domains by

$$f(x) = x^2$$

for all real values of x

$$g(x) = \frac{1}{x+2}$$

 $g(x) = \frac{1}{x+2}$ for real values of x, $x \neq -2$

State the range of f.

(1 mark)

(b) (i) Find fg(x). (1 mark)

Solve the equation fg(x) = 4.

(4 marks)

(i) Explain why the function f does not have an inverse. (c)

(1 mark)

(ii) The inverse of g is g^{-1} . Find $g^{-1}(x)$.

(3 marks)

4 (a) Sketch and label on the same set of axes the graphs of:

(i)
$$y = |x|$$
; (1 mark)

(ii)
$$y = |2x - 4|$$
. (2 marks)

- (b) (i) Solve the equation |x| = |2x 4|. (3 marks)
 - (ii) Hence, or otherwise, solve the inequality |x| > |2x 4|. (2 marks)
- 8 A function f is defined by $f(x) = 2e^{3x} 1$ for all real values of x.
 - (a) Find the range of f. (2 marks)
 - (b) Show that $f^{-1}(x) = \frac{1}{3} \ln \left(\frac{x+1}{2} \right)$. (3 marks)
 - (c) Find the gradient of the curve $y = f^{-1}(x)$ when x = 0. (4 marks)
- 9 The diagram shows the curve with equation $y = \sin^{-1} 2x$, where $-\frac{1}{2} \le x \le \frac{1}{2}$.

(a) Find the y-coordinate of the point A, where $x = \frac{1}{2}$. (1 mark)

3	The	functions	f and	g	are	defined	with	their	respective	domains	by	
---	-----	-----------	-------	---	-----	---------	------	-------	------------	---------	----	--

$$f(x) = 3 - x^2$$
, for all real values of x

$$g(x) = \frac{2}{x+1}$$
, for real values of x , $x \neq -1$

- (a) Find the range of f. (2 marks)
- (b) The inverse of g is g^{-1} .

(i) Find
$$g^{-1}(x)$$
. (3 marks)

(ii) State the range of
$$g^{-1}$$
. (1 mark)

- (c) The composite function gf is denoted by h.
 - (i) Find h(x), simplifying your answer. (2 marks)
 - (ii) State the greatest possible domain of h. (1 mark)
- 7 (a) Sketch the graph of y = |2x|. (1 mark)
 - (b) On a separate diagram, sketch the graph of y = 4 |2x|, indicating the coordinates of the points where the graph crosses the coordinate axes. (3 marks)

(c) Solve
$$4 - |2x| = x$$
. (3 marks)

(d) Hence, or otherwise, solve the inequality 4 - |2x| > x. (2 marks)

- 3 (a) Solve the equation $\csc x = 2$, giving all values of x in the interval $0^{\circ} < x < 360^{\circ}$.
 - (b) The diagram shows the graph of $y = \csc x$ for $0^{\circ} < x < 360^{\circ}$.

- (i) The point A on the curve is where $x = 90^{\circ}$. State the y-coordinate of A.

 (1 mark)
- (ii) Sketch the graph of $y = |\csc x|$ for $0^{\circ} < x < 360^{\circ}$. (2 marks)
- (c) Solve the equation $|\csc x| = 2$, giving all values of x in the interval $0^{\circ} < x < 360^{\circ}$.
- 5 The functions f and g are defined with their respective domains by

$$f(x) = \sqrt{x-2}$$
 for $x \ge 2$

$$g(x) = \frac{1}{x}$$
 for real values of x , $x \neq 0$

- (a) State the range of f. (2 marks)
- (b) (i) Find fg(x). (1 mark)
 - (ii) Solve the equation fg(x) = 1. (3 marks)
- (c) The inverse of f is f^{-1} . Find $f^{-1}(x)$. (3 marks)