Core 3 Trigonometry Questions

- 1 (a) Find $\frac{dy}{dx}$ when $y = \tan 3x$. (2 marks)
- 4 It is given that $2\csc^2 x = 5 5\cot x$.
 - (a) Show that the equation $2\csc^2 x = 5 5\cot x$ can be written in the form

$$2\cot^2 x + 5\cot x - 3 = 0$$
 (2 marks)

- (b) Hence show that $\tan x = 2$ or $\tan x = -\frac{1}{3}$. (2 marks)
- (c) Hence, or otherwise, solve the equation 2cosec²x = 5 5 cot x, giving all values of x in radians to one decimal place in the interval -π < x ≤ π.</p>
 (3 marks)
- 3 (a) Solve the equation $\sec x = 5$, giving all the values of x in the interval $0 \le x \le 2\pi$ in radians to two decimal places. (3 marks)
 - (b) Show that the equation $\tan^2 x = 3 \sec x + 9$ can be written as

$$\sec^2 x - 3\sec x - 10 = 0$$
 (2 marks)

- (c) Solve the equation tan² x = 3 sec x + 9, giving all the values of x in the interval 0 ≤ x ≤ 2π in radians to two decimal places. (4 marks)
- 7 (a) Given that $z = \frac{\sin x}{\cos x}$, use the quotient rule to show that $\frac{dz}{dx} = \sec^2 x$. (3 marks)
 - (b) Sketch the curve with equation $y = \sec x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. (2 marks)
 - (b) (i) Given that $y = \sin^{-1} 2x$, show that $x = \frac{1}{2} \sin y$. (1 mark)

(ii) Given that
$$x = \frac{1}{2}\sin y$$
, find $\frac{dx}{dy}$ in terms of y. (1 mark)

(c) Using the answers to part (b) and a suitable trigonometrical identity, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{1 - 4x^2}} \tag{4 marks}$$

- 2 Describe a sequence of two geometrical transformations that maps the graph of $y = \sec x$ onto the graph of $y = 1 + \sec 3x$. (4 marks)
- 5 (a) (i) Show that the equation

$$2 \cot^2 x + 5 \csc x = 10$$

can be written in the form $2\csc^2 x + 5\csc x - 12 = 0$. (2 marks)

- (ii) Hence show that $\sin x = -\frac{1}{4}$ or $\sin x = \frac{2}{3}$. (3 marks)
- (b) Hence, or otherwise, solve the equation

$$2 \cot^2(\theta - 0.1) + 5 \csc(\theta - 0.1) = 10$$

giving all values of θ in radians to two decimal places in the interval $-\pi < \theta < \pi$.

(3 marks)

6 (a) Find $\frac{dy}{dx}$ when:

(ii)
$$y = x^2 \tan x$$
. (2 marks)

- 8 (a) Write down $\int \sec^2 x \, dx$. (1 mark)
 - (b) Given that $y = \frac{\cos x}{\sin x}$, use the quotient rule to show that $\frac{dy}{dx} = -\csc^2 x$. (4 marks)
 - (c) Prove the identity $(\tan x + \cot x)^2 = \sec^2 x + \csc^2 x$. (3 marks)
 - (d) Hence find $\int_{0.5}^{1} (\tan x + \cot x)^2 dx$, giving your answer to two significant figures. (4 marks)