Core 4 Trigonometry Questions

3	It is	given that $3\cos\theta - 2\sin\theta = R\cos(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$.	
	(a)	Find the value of R .	(1 mark)
	(b)	Show that $\alpha \approx 33.7^{\circ}$.	(2 marks)
	(c)	Hence write down the maximum value of $3\cos\theta - 2\sin\theta$ and find a positive of θ at which this maximum value occurs.	value (3 marks)
6	(a)	Express $\cos 2x$ in the form $a\cos^2 x + b$, where a and b are constants.	(2 marks)
4	(a)	(i) Express $\sin 2x$ in terms of $\sin x$ and $\cos x$.	(1 mark)
		(ii) Express $\cos 2x$ in terms of $\cos x$.	(1 mark)
	(b)	Show that	
		$\sin 2x - \tan x = \tan x \cos 2x$	
		for all values of x .	(3 marks)
	(c)	Solve the equation $\sin 2x - \tan x = 0$, giving all solutions in degrees in the in $0^{\circ} < x < 360^{\circ}$.	nterval (4 marks)
3	(a)	Express $\cos 2x$ in terms of $\sin x$.	— (1 mark)
	(b)	(i) Hence show that $3\sin x - \cos 2x = 2\sin^2 x + 3\sin x - 1$ for all values	of x . (2 marks)
		(ii) Solve the equation $3 \sin x - \cos 2x = 1$ for $0^{\circ} < x < 360^{\circ}$.	(4 marks)
	(c)	Use your answer from part (a) to find $\int \sin^2 x dx$.	(2 marks)

7 (a) Use the identity

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

to express $\tan 2x$ in terms of $\tan x$.

(2 marks)

(b) Show that

$$2 - 2\tan x - \frac{2\tan x}{\tan 2x} = (1 - \tan x)^2$$

for all values of x, $\tan 2x \neq 0$.

(4 marks)

- 3 (a) Express $4\cos x + 3\sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 360^{\circ}$, giving your value for α to the nearest 0.1°. (3 marks)
 - (b) Hence solve the equation $4\cos x + 3\sin x = 2$ in the interval $0^{\circ} < x < 360^{\circ}$, giving all solutions to the nearest 0.1° .
 - (c) Write down the minimum value of $4\cos x + 3\sin x$ and find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ at which this minimum value occurs. (3 marks)