Core 4 Vectors Questions 7 The quadrilateral ABCD has vertices A(2,1,3), B(6,5,3), C(6,1,-1) and D(2,-3,-1). The line l_1 has vector equation $\mathbf{r} = \begin{bmatrix} 6 \\ 1 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. - (a) (i) Find the vector \overrightarrow{AB} . (2 marks) - (ii) Show that the line AB is parallel to l_1 . (1 mark) - (iii) Verify that D lies on l_1 . (2 marks) - (b) The line l_2 passes through D(2,-3,-1) and M(4,1,1). - (i) Find the vector equation of l_2 . (2 marks) - (ii) Find the angle between l_2 and AC. (3 marks) - 6 The points \overrightarrow{A} and \overrightarrow{B} have coordinates (2, 4, 1) and (3, 2, -1) respectively. The point C is such that $\overrightarrow{OC} = 2\overrightarrow{OB}$, where O is the origin. - (a) Find the vectors: (i) $$\overrightarrow{OC}$$; (1 mark) (ii) $$\overrightarrow{AB}$$. (2 marks) - (b) (i) Show that the distance between the points A and C is S. (2 marks) - (ii) Find the size of angle BAC, giving your answer to the nearest degree. (4 marks) - (c) The point $P(\alpha, \beta, \gamma)$ is such that BP is perpendicular to AC. Show that $$4\alpha - 3\gamma = 15$$. (3 marks) - 6 The points A, B and C have coordinates (3, -2, 4), (5, 4, 0) and (11, 6, -4) respectively. - (a) (i) Find the vector \overrightarrow{BA} . (2 marks) (ii) Show that the size of angle ABC is $\cos^{-1}\left(-\frac{5}{7}\right)$. (5 marks) - (b) The line l has equation $\mathbf{r} = \begin{bmatrix} 8 \\ -3 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$. - (i) Verify that C lies on l. (2 marks) (ii) Show that AB is parallel to l. (1 mark) (c) The quadrilateral ABCD is a parallelogram. Find the coordinates of D. (3 marks) - 7 The lines l_1 and l_2 have equations $\mathbf{r} = \begin{bmatrix} 8 \\ 6 \\ -9 \end{bmatrix} + \lambda \begin{bmatrix} 3 \\ -3 \\ -1 \end{bmatrix}$ and $\mathbf{r} = \begin{bmatrix} -4 \\ 0 \\ 11 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ respectively. - (a) Show that l_1 and l_2 are perpendicular. (2 marks) - (b) Show that l_1 and l_2 intersect and find the coordinates of the point of intersection, P. (5 marks) - (c) The point A(-4, 0, 11) lies on l_2 . The point B on l_1 is such that AP = BP. Find the length of AB. (4 marks)