Decision 1 Matching Graph Questions

(a) Draw a bipartite graph representing the following adjacency matrix.

(2 marks)

	U	V	W	X	Y	Z
A	1	0	1	0	1	0
В	0	1	0	1	0	0
C	0	1	0	0	0	1
D	0	0	0	1	0	0
E	0	0	1	0	1	1
F	0	0	0	1	1	0

(b) Given that initially A is matched to W, B is matched to X, C is matched to V, and E is matched to Y, use the alternating path algorithm, from this initial matching, to find a complete matching. List your complete matching. (5 marks)

1 Five people, A, B, C, D and E, are to be matched to five tasks, 1, 2, 3, 4 and 5. The table shows which tasks each person can do.

Person	Tasks		
A	1, 3, 5		
В	2, 4		
C	2		
D	4, 5		
E	3, 5		

(a) Show this information on a bipartite graph.

(2 marks)

(b) Initially A is matched to task 3, B to task 4, C to task 2 and E to task 5.

Use an alternating path from this initial matching to find a complete matching.

(4 marks)

2 Five people A, B, C, D and E are to be matched to five tasks R, S, T, U and V.

The table shows the tasks that each person is able to undertake.

Person	Tasks		
A	R, V		
В	R, T		
C	T, V		
D	U, V		
E	S, U		

(a) Show this information on a bipartite graph.

(2 marks)

(b) Initially, A is matched to task V, B to task R, C to task T, and E to task U.

Demonstrate, by using an alternating path from this initial matching, how each person can be matched to a task.

(4 marks)

Six people, A, B, C, D, E and F, are to be matched to six tasks, 1, 2, 3, 4, 5 and 6. The following adjacency matrix shows the possible matching of people to tasks.

	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6
A	0	1	0	1	0	0
В	1	0	1	0	1	0
C	0	0	1	0	1	1
D	0	0	0	1	0	0
E	0	1	0	0	0	1
F	0	0	0	1	1	0

(a) Show this information on a bipartite graph.

(2 marks)

- (b) At first F insists on being matched to task 4. Explain why, in this case, a complete matching is impossible. (1 mark)
- (c) To find a complete matching F agrees to be assigned to either task 4 or task 5.

Initially B is matched to task 3, C to task 6, E to task 2 and F to task 4.

From this initial matching, use the maximum matching algorithm to obtain a complete matching. List your complete matching. (6 marks)