FP1 Matrices Questions

$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

(ii) Calculate the matrix product A^2 .

(2 marks)

(b) The matrix **B** is defined by

$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

(i) Calculate $\mathbf{B}^2 - \mathbf{A}^2$.

(3 marks)

(ii) Calculate $(\mathbf{B} + \mathbf{A})(\mathbf{B} - \mathbf{A})$.

(3 marks)

5 The matrix \mathbf{M} is defined by

$$\mathbf{M} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

(a) Find the matrix:

(i) M^2 ;

(3 marks)

(ii) \mathbf{M}^4 .

(1 mark)

(c) Find the matrix \mathbf{M}^{2006} .

(3 marks)

2 The matrices A and B are given by

$$\mathbf{A} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

(a) Calculate:

(i) A + B;

(2 marks)

(ii) BA.

(3 marks)

1 The matrices A and B are given by

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 3 & 8 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

The matrix $\mathbf{M} = \mathbf{A} - 2\mathbf{B}$.

- (a) Show that $\mathbf{M} = n \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, where *n* is a positive integer. (2 marks)
- (c) Show that

$$\mathbf{M}^2 = q\mathbf{I}$$

where q is an integer and \mathbf{I} is the 2×2 identity matrix.

(2 marks)