FP3 Polar Coordinates Questions

- 6 (a) A circle C_1 has cartesian equation $x^2 + (y 6)^2 = 36$. Show that the polar equation of C_1 is $r = 12 \sin \theta$. (4 marks)
 - (b) A curve C_2 with polar equation $r = 2\sin\theta + 5$, $0 \le \theta \le 2\pi$ is shown in the diagram.

Calculate the area bounded by C_2 .

(6 marks)

(c) The circle C_1 intersects the curve C_2 at the points P and Q. Find, in surd form, the area of the quadrilateral OPMQ, where M is the centre of the circle and O is the pole.

(6 marks)

4 The diagram shows the curve C with polar equation

$$r = 6(1 - \cos \theta), \qquad 0 \le \theta < 2\pi$$

- (a) Find the area of the region bounded by the curve C. (6 marks)
- (b) The circle with cartesian equation $x^2 + y^2 = 9$ intersects the curve C at the points A and B.
 - (i) Find the polar coordinates of A and B. (4 marks)
 - (ii) Find, in surd form, the length of AB. (2 marks)
- 2 A curve has polar equation $r(1 \sin \theta) = 4$. Find its cartesian equation in the form y = f(x).

7 A curve C has polar equation

$$r = 6 + 4\cos\theta$$
, $-\pi \leqslant \theta \leqslant \pi$

The diagram shows a sketch of the curve C, the pole O and the initial line.

(a) Calculate the area of the region bounded by the curve C.

(6 marks)

(b) The point P is the point on the curve C for which $\theta = \frac{2\pi}{3}$.

The point Q is the point on C for which $\theta = \pi$.

Show that QP is parallel to the line $\theta = \frac{\pi}{2}$.

(4 marks)

(c) The line PQ intersects the curve C again at a point R.

The line RO intersects C again at a point S.

(i) Find, in surd form, the length of PS.

(4 marks)

(ii) Show that the angle *OPS* is a right angle.

(1 mark)

- 4 (a) Show that $(\cos \theta + \sin \theta)^2 = 1 + \sin 2\theta$. (1 mark)
 - (b) A curve has cartesian equation

$$(x^2 + y^2)^3 = (x + y)^4$$

Given that $r \ge 0$, show that the polar equation of the curve is

$$r = 1 + \sin 2\theta \tag{4 marks}$$

(c) The curve with polar equation

$$r = 1 + \sin 2\theta, \quad -\pi \leqslant \theta \leqslant \pi$$

is shown in the diagram.

- (i) Find the two values of θ for which r = 0. (3 marks)
- (ii) Find the area of one of the loops. (6 marks)