6. Figure 2

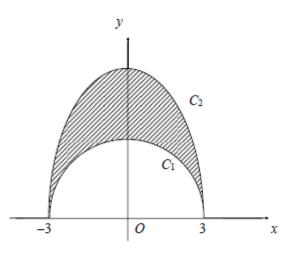


Figure 2 shows a sketch of part of two curves C_1 and C_2 for $y \ge 0$.

The equation of C_1 is $y = m_1 - x^{m_1}$ and the equation of C_2 is $y = m_2 - x^{m_2}$, where m_1 , m_2 , n_1 and n_2 are positive integers with $m_2 > m_1$.

Both C_1 and C_2 are symmetric about the line x = 0 and they both pass through the points (3, 0) and (-3, 0).

Given that $n_1 + n_2 = 12$, find

(a) the possible values of n_1 and n_2 ,

(4)

(b) the exact value of the smallest possible area between C_1 and C_2 , simplifying your answer,

(8)

(c) the largest value of x for which the gradients of the two curves can be the same. Leave your answer in surd form

(5)