7.	A student was attempting to prove that $x = \frac{1}{2}$ is the only real root of		
	$x^3 + \frac{3}{4}x - \frac{1}{2} = 0.$		
	The attempted solution was as follows.		
	$\chi^3 + \frac{3}{4}\chi = \frac{1}{2}$		
	$\therefore x(x^2 + \frac{3}{4}) = \frac{1}{2}$		
	$\therefore \qquad \qquad x = \frac{1}{2}$		
	or $x^2 + \frac{3}{4} = \frac{1}{2}$		
	ie. $x^2 = -\frac{1}{4}$	no solution	
	$\therefore \qquad \text{only real root is } x = \frac{1}{2}$		
	(a) Explain clearly the error in the above attempt.		
	(b) Give a correct proof that $x = \frac{1}{2}$ is the only real root of		
	The equation $x^3 + \beta x - \alpha = 0 \qquad \qquad \text{(I)}$		
	where α , β are real, $\alpha \neq 0$, has a real root at $x = \alpha$.		
	(c) Find and simplify an expression for β in terms of α and prove that α is the only real root provided $ \alpha < 2$.		
	1001 province a < 2.	(6)	

An examiner chooses a positive number α so that α is the only real root of equation (I) but the incorrect method used by the student produces 3 distinct real "roots".

(d) Find the range of possible values for α .