3.
$$f(x) = x^3 - (k+4)x + 2k, \quad \text{where } k \text{ is a constant.}$$

(a) Show that, for all values of k, the curve with equation y = f(x) passes through the point (2, 0).

(1)

(5)

(5)

(b) Find the values of k for which the equation f(x) = 0 has exactly two distinct roots.

Given that k > 0, that the x-axis is a tangent to the curve with equation y = f(x), and that the line y = p intersects the curve in three distinct points,

(c) find the set of values that p can take.