

- (a) by writing $\log_y x = z$, or otherwise, show that $\log_y x = \frac{1}{\log_x y}$.
- (b) Given also that $\log_x y = \log_y x$, show that $y = \frac{1}{x}$.
- (c) Solve the simultaneous equations

$$\log_x y = \log_y x,$$

$$\log_x (x - y) = \log_y (x + y). \tag{7}$$

(2)

(2)