[arccos x and arctan x are alternative notation for cos⁻¹ x and tan⁻¹ x respectively]

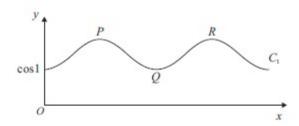


Figure 2

Figure 2 shows a sketch of the curve C_1 with equation $y = \cos(\cos x)$, $0 \le x \le 2\pi$.

The curve has turning points at (0, cos1), P, Q and R as shown in Figure 2.

The curve C_2 has equation $y = \sin(\cos x)$, $0 \le x \le 2\pi$. The curves C_1 and C_2 intersect at the points S and T.

(b) Copy Figure 2 and on this diagram sketch C₂ stating the coordinates of the minimum point on C₂ and the points where C₂ meets or crosses the coordinate axes.
(5)

The coordinates of S are (α, d) where $0 < \alpha < \pi$.

(c) Show that
$$\alpha = \arccos\left(\frac{\pi}{4}\right)$$
. (2)

The tangent to C_1 at the point S has gradient $\tan \beta$.

(e) Show that
$$\beta = \arctan \sqrt{\left(\frac{16 - \pi^2}{32}\right)}$$
. (5)

(f) Find, in terms of β , the obtuse angle between the tangent to C_1 at S and the tangent to C_2 at S.