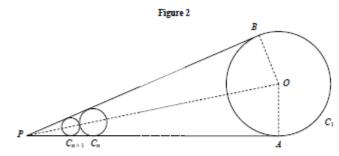
Core 2 Sequences Questions (From AEA Papers)

For answers, see the AEA website

2006, Question 7:



The circle C_1 has centre O and radius R. The tangents AP and BP to C_1 meet at the point P and angle $APB = 2\alpha$, $0 \le \alpha \le \frac{\pi}{2}$. A sequence of circles $C_1, C_2, \ldots, C_n, \ldots$ is drawn so that each new circle C_{n+1} touches each of C_n . AP and BP for $n = 1, 2, 3, \ldots$ as shown in Figure 2. The centre of each circle lies on the line OP.

(a) Show that the radii of the circles form a geometric sequence with common ratio

$$\frac{1-\sin\alpha}{1+\sin\alpha}.$$

(b) Find, in terms of R and α , the total area enclosed by all the circles, simplifying your answer.

The area inside the quadrilateral PAOB, not enclosed by part of C_1 or any of the other circles, is S.

(c) Show that

$$S = R^{2} \left(\alpha + \cot \alpha - \frac{\pi}{4} \operatorname{cosec} \alpha - \frac{\pi}{4} \sin \alpha \right).$$
(5)

(d) Show that, as α varies,

$$\frac{\mathrm{d}S}{\mathrm{d}\alpha} = R^2 \cot^2 \alpha \left(\frac{\pi}{4} \cos \alpha - 1 \right).$$

(4)

(5)

(e) Find, in terms of R, the least value of S for $\frac{\pi}{6} \le \alpha \le \frac{\pi}{4}$.

(3)

2007, Question 5:

5.

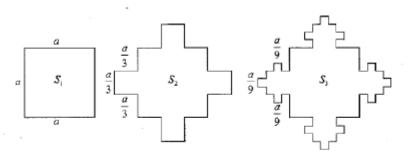


Figure 1

Figure 1 shows part of a sequence S_1, S_2, S_3, \ldots , of model snowflakes. The first term S_1 consists of a single square of side a. To obtain S_2 , the middle third of each edge is replaced with a new square, of side $\frac{a}{3}$, as shown in Figure 1. Subsequent terms are obtained by replacing the middle third of each external edge of a new square formed in the previous snowflake, by a square $\frac{1}{3}$ of the size, as illustrated by S_3 in Figure 1.

- (a) Deduce that to form S_4 , 36 new squares of side $\frac{a}{27}$ must be added to S_3 .
- (b) Show that the perimeters of S_2 and S_3 are $\frac{20a}{3}$ and $\frac{28a}{3}$ respectively.
 - (2)
- (c) Find the perimeter of S_n.
 (4)
- (d) Describe what happens to the perimeter of S_n as n increases.
 (1)
- (e) Find the areas of S₁, S₂ and S₃.

 (2)
- (f) Find the smallest value of the constant S such that the area of S_n ≤ S, for all values of n.
 (5)

2008, Question 1:

1. The first and second terms of an arithmetic series are 200 and 197.5 respectively.

The sum to n terms of the series is S_n .

Find the largest positive value of S_n .

(Total 5 marks)

(1)

2010, Question 2:

2. The sum of the first p terms of an arithmetic series is q and the sum of the first q terms of the same arithmetic series is p, where p and q are positive integers and $p \neq q$.

Giving simplified answers in terms of p and q, find

(a) the common difference of the terms in this series,

(5)

(b) the first term of the series,

(3)

(c) the sum of the first (p+q) terms of the series.

(3)

2013, Question 4:

4. A sequence of positive integers $a_1, a_2, a_3, ...$ has rth term given by

$$a_r = 2^r - 1$$

(a) Write down the first 6 terms of this sequence.

(1)

(b) Verify that $a_{r+1} = 2a_r + 1$

(1)

(c) Find
$$\sum_{r=1}^{n} a_r$$
 (3)

(d) Show that
$$\frac{1}{a_{r+1}} < \frac{1}{2} \times \frac{1}{a_r}$$
 (1)

(e) Hence show that
$$1 + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \frac{1}{31} + \dots < 1 + \frac{1}{3} + \left(\frac{1}{7} + \frac{\frac{1}{2}}{7} + \frac{\frac{1}{4}}{7} + \dots\right)$$
 (2)

(f) Show that
$$\frac{31}{21} < \sum_{r=1}^{\infty} \frac{1}{a_r} < \frac{34}{21}$$
 (5)