Core 3 Integration Questions (From AEA Papers)

For answers, see the AEA website

2003, Question 7:

7. Figure 2

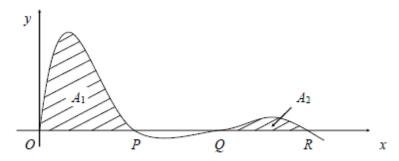


Figure 3 shows a sketch of part of the curve C with question

$$y = e^{-x} \sin x$$
, $x \ge 0$.

(a) Find the coordinates of the points P, Q and R where C cuts the positive axis.

(2)

(b) Use integration by parts to show that

$$\int e^{-x} \sin x \, dx = -\frac{1}{2} e^{-x} \left(\sin x + \cos x \right) + \text{constant.}$$
(5)

The terms of the sequence $A_1, A_2, \ldots, A_n, \ldots$ represent areas between C and the x-axis for successive portions of C where y is positive. The area represented by A_1 and A_2 are shown in Figure 3.

(c) Find an expression for A_n in terms of n and π .

(6)

(d) Show that $A_1 + A_2 + ... + A_n + ...$ is a geometric series with sum to infinity

$$\frac{e^{\pi}}{2(e^{\pi}-1)}.$$
 (5)

(e) Given that

$$\int_0^\infty e^{-x} \sin x \, dx = \frac{1}{2},$$

find the exact value of

$$\int_0^\infty \left| e^{-x} \sin x \right| \, \mathrm{d}x$$

and simplify your answer.

(4)

2005, Question 7:

7. (a) Use the substitution $x = \sec \theta$ to show that

$$\int \sqrt{(x^2 - 1)} \, dx$$

can be written as

$$\int \sec \theta \tan^2 \theta \ d\theta.$$

(3)

(b) Use integration by parts to show that

$$\int \sec\theta \tan^2\theta \ d\theta = \frac{1}{2} \left[\sec\theta \tan\theta - \ln\left| \sec\theta + \tan\theta \right| \right] + \text{constant}.$$

(7)

(c) Evaluate $\int_0^{\frac{\pi}{4}} \sin x \sqrt{(\cos 2x)} \, dx.$

(9)

2010, Question 5:

5.

$$I = \int \frac{1}{(x-1)\sqrt{(x^2-1)}} dx, \quad x > 1$$

(a) Use the substitution $x = 1 + u^{-1}$ to show that

$$I = -\left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} + c.$$
 (7)

(b) Hence show that

$$\int_{\sec \alpha}^{\sec \beta} \frac{1}{(x-1)\sqrt{(x^2-1)}} \, \mathrm{d}x = \cot \left(\frac{\alpha}{2}\right) - \cot \left(\frac{\beta}{2}\right), \qquad 0 < \alpha < \beta < \frac{\pi}{2}$$

(5)

2011, Question 2:

2. Given that

$$\int_{0}^{\frac{\pi}{2}} \left(1 + \tan\left[\frac{1}{2}x\right]\right)^{2} dx = a + \ln b$$

find the value of a and the value of b.

(Total 7 marks)

2013, Question 5:

5. In this question u and v are functions of x. Given that $\int u \, dx$, $\int v \, dx$ and $\int uv \, dx$ satisfy

$$\int uv \, dx = \left(\int u \, dx \right) \times \left(\int v \, dx \right) \qquad uv \neq 0$$

(a) show that
$$1 = \frac{\int u \, dx}{u} + \frac{\int v \, dx}{v}$$
 (3)

Given also that $\frac{\int u \, dx}{u} = \sin^2 x$,

(b) use part (a) to write down an expression, in terms of x, for $\frac{\int v \, dx}{v}$, (1)

(c) show that $\frac{1}{u}\frac{du}{dx} = \frac{1 - 2\sin x \cos x}{\sin^2 x}$ (3)

- (d) hence use integration to show that $u = Ae^{-\cot x}\csc^2 x$, where A is an arbitrary constant. (6)
- (e) By differentiating $e^{\tan x}$ find a similar expression for v. (2)

2013, Question 6:

6. (a) Starting from $[f(x) - \lambda g(x)]^2 \ge 0$ show that λ satisfies the quadratic inequality

$$\left(\int_{a}^{b} \left[g(x)\right]^{2} dx\right) \lambda^{2} - 2\left(\int_{a}^{b} f(x)g(x) dx\right) \lambda + \int_{a}^{b} \left[f(x)\right]^{2} dx \geqslant 0$$

where a and b are constants and λ can take any real value.

(2)

(b) Hence prove that

$$\left[\int_{a}^{b} f(x)g(x) dx\right]^{2} \leqslant \left[\int_{a}^{b} [f(x)]^{2} dx\right] \times \left[\int_{a}^{b} [g(x)]^{2} dx\right]$$
(3)

(c) By letting f(x) = 1 and $g(x) = (1 + x^3)^{\frac{1}{2}}$ show that

$$\int_{-1}^{2} \left(1 + x^{3}\right)^{\frac{1}{2}} dx \leqslant \frac{9}{2}$$
(4)

(d) Show that
$$\int_{-1}^{2} x^2 (1+x^3)^{\frac{1}{4}} dx = \frac{12\sqrt{3}}{5}$$
 (3)

(e) Hence show that

$$\frac{144}{55} \leqslant \int_{-1}^{2} \left(1 + x^{3}\right)^{\frac{1}{2}} dx \tag{4}$$