Core 3 Trigonometry Questions (From AEA Papers)

For answers, see the AEA website

2004, Question 7:

- 7. Triangle ABC, with BC = a, AC = b and AB = c is inscribed in a circle. Given that AB is a diameter of the circle and that a^2 , b^2 and c^2 are three consecutive terms of an arithmetic progression (arithmetic series),
 - (a) express b and c in terms of a,

(4)

(b) verify that cot A, cot B and cot C are consecutive terms of an arithmetic progression.

(3)

In an acute-angled triangle PQR the sides QR, PR and PQ have lengths p, q and r respectively.

(c) Prove that

$$\frac{p}{\sin P} = \frac{q}{\sin Q} = \frac{r}{\sin R}.$$
 (3)

Given now that triangle PQR is such that p^2 , q^2 and r^2 are three consecutive terms of an arithmetic progression,

(d) use the cosine rule to prove that $\frac{2\cos Q}{q} = \frac{\cos P}{p} + \frac{\cos R}{r}.$ (6)

(e) Using the results given in parts (c) and (d), prove that cot P, cot Q and cot R are consecutive terms in an arithmetic progression.

(3)

2007, Question 6:

6.

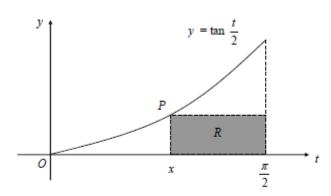


Figure 2 shows a sketch of the curve C with equation $y = \tan \frac{t}{2}$, $0 \le t \le \frac{\pi}{2}$.

The point P on C has coordinates $\left(x, \tan \frac{x}{2}\right)$.

The vertices of rectangle R are at (x, 0), $\left(\frac{x}{2}, 0\right)$, $\left(\frac{x}{2}, \tan \frac{x}{2}\right)$ and $\left(x, \tan \frac{x}{2}\right)$ as shown in Figure 2.

(a) Find an expression, in terms of x, for the area A of R.

(1)

(b) Show that $\frac{dA}{dx} = \frac{1}{4}(\pi - 2x - 2\sin x)\sec^2\frac{x}{2}$.

(4)

(c) Prove that the maximum value of A occurs when $\frac{\pi}{4} \le x \le \frac{\pi}{3}$.

(7)

(d) Prove that $\tan \frac{\pi}{8} = \sqrt{2} - 1$.

(3)

(e) Show that the maximum value of $A \ge \frac{\pi}{4}(\sqrt{2} - 1)$.

(2)

2009, Question 2:

2. The curve C has equation $y = x^{\sin x}$, x > 0

(a) Find the equation of the tangent to C at the point where $x = \frac{\pi}{2}$.

(6)

(b) Prove that this tangent touches C at infinitely many points.

(3)

2011, Question 1:

1. Solve for $0 \le \theta \le 180^{\circ}$

$$\tan\left(\theta + 35^{\circ}\right) = \cot\left(\theta - 53^{\circ}\right)$$

(Total 4 marks)

2012, Question 7:

7. [$\arccos x$ and $\arctan x$ are alternative notation for $\cos^{-1} x$ and $\tan^{-1} x$ respectively]

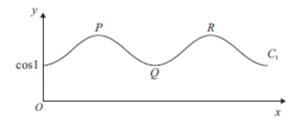


Figure 2

Figure 2 shows a sketch of the curve C_1 with equation $y = \cos(\cos x)$, $0 \le x \le 2\pi$.

The curve has turning points at (0, cos1), P, Q and R as shown in Figure 2.

(a) Find the coordinates of the points P, Q and R.

(4)

The curve C_2 has equation $y = \sin(\cos x)$, $0 \le x \le 2\pi$. The curves C_1 and C_2 intersect at the points S and T.

(b) Copy Figure 2 and on this diagram sketch C₂ stating the coordinates of the minimum point on C2 and the points where C2 meets or crosses the coordinate axes.

(5)

The coordinates of S are (α, d) where $0 \le \alpha \le \pi$.

(c) Show that
$$\alpha = \arccos\left(\frac{\pi}{4}\right)$$
. (2)

(d) Find the value of d in surd form and write down the coordinates of T.

(3)

The tangent to C_1 at the point S has gradient $\tan \beta$.

(e) Show that
$$\beta = \arctan \sqrt{\left(\frac{16 - \pi^2}{32}\right)}$$
. (5)

(f) Find, in terms of β , the obtuse angle between the tangent to C_1 at S and the tangent to C_2 at S.