Core 4 Parametric Equation Questions (From AEA Papers)

For answers, see the AEA website

2002, Question 3:

3. The curve C has parametric equations

$$x = 15t - t^3$$
, $y = 3 - 2t^2$.

Find the values of t at the points where the normal to C at (14, 1) cuts C again.

(11)

2003, Question 3:

3.

Figure 2

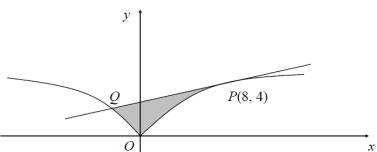


Figure 2 shows a sketch of a part of the curve C with parametric equations

$$x = t^3$$
, $y = t^2$.

The tangent at the point P(8, 4) cuts C at the point Q.

Find the area of the shaded region between PQ and C.

(11)

2004, Question 5:

5. (a) Given that
$$y = \ln [t + \sqrt{(1+t^2)}]$$
, show that $\frac{dy}{dt} = \frac{1}{\sqrt{(1+t^2)}}$.

(3)

The curve C has parametric equations

$$x = \frac{1}{\sqrt{(1+t^2)}}, \quad y = \ln [t + \sqrt{(1+t^2)}], \quad t \in \mathbb{R}.$$

A student was asked to prove that, for $t \ge 0$, the gradient of the tangent to C is negative.

The attempted proof was as follows:

$$y = \ln\left(t + \frac{1}{x}\right)$$

$$= \ln\left(\frac{\alpha + 1}{x}\right)$$

$$= \ln\left(tx + 1\right) - \ln x$$

$$\therefore \frac{dy}{dx} = \frac{t}{tx + 1} - \frac{1}{x}$$

$$= \frac{\frac{t}{x}}{t + \frac{1}{x}} - \frac{1}{x}$$

$$= \frac{t\sqrt{(1 + t^2)}}{t + \sqrt{(1 + t^2)}} - \sqrt{(1 + t^2)}$$

$$= -\frac{(1 + t^2)}{t + \sqrt{(1 + t^2)}}$$

As $(1+t^2) \ge 0$, and $t + \sqrt{(1+t^2)} \ge 0$ for $t \ge 0$, $\frac{dy}{dx} \le 0$ for $t \ge 0$.

- (b) (i) Identify the error in this attempt.
 - (i) Give a correct version of the proof

(6)

(c) Prove that $\ln [-t + \sqrt{(1+t^2)}] = -\ln [t + \sqrt{(1+t^2)}]$.

- (3)
- (d) Deduce that C is symmetric about the x-axis and sketch the graph of C.
- (3)

2009, Question 6:

6.

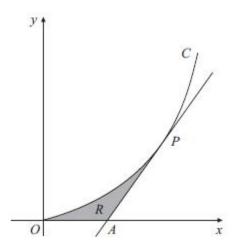


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 2\sin t$$
, $y = \ln(\sec t)$, $0 \leqslant t < \frac{\pi}{2}$.

The tangent to C at the point P, where $t = \frac{\pi}{3}$, cuts the x-axis at A.

(a) Show that the x-coordinate of A is
$$\frac{\sqrt{3}}{3}(3-\ln 2)$$
.

The shaded region R lies between C, the positive x-axis and the tangent AP as shown in Figure 2.

(b) Show that the area of R is
$$\sqrt{3}(1 + \ln 2) - 2\ln(2 + \sqrt{3}) - \frac{\sqrt{3}}{6}(\ln 2)^2$$
. (11)

2011, Question 4:

4. The curve C has parametric equations

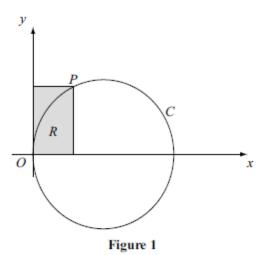
$$x = \cos^2 t$$

$$y = \cos t \sin t$$

where $0 \le t \le \pi$

(a) Show that C is a circle and find its centre and its radius.

(5)



- Figure 1 shows a sketch of C. The point P, with coordinates $\left(\cos^2\alpha, \cos\alpha\sin\alpha\right)$, $0 < \alpha < \frac{\pi}{2}$, lies on C. The rectangle R has one side on the x-axis, one side on the y-axis and OP as a diagonal, where O is the origin.
- (b) Show that the area of R is $\sin \alpha \cos^3 \alpha$

(1)

(c) Find the maximum area of R, as α varies.

(7)