Core 4 Trigonometry Questions (From AEA Papers)

For answers, see the AEA website

2002, Question 1:

1. Solve the following equation, for $0 \le x \le \pi$, giving your answers in terms of π .

$$\sin 5x - \cos 5x = \cos x - \sin x.$$

(8)

2003, Question 2:

2. Find the values of tan θ such that

$$2 \sin^2 \theta - \sin \theta \sec \theta = 2 \sin 2\theta - 2$$
.

(8)

2004, Question 1:

1. Solve the equation $\cos x + \sqrt{1 - \frac{1}{2}\sin 2x} = 0$, in the interval $0^{\circ} \le x < 360^{\circ}$.

(9)

2005, Question 2:

2. Solve, for $0 < \theta < 2\pi$,

$$\sin 2\theta + \cos 2\theta + 1 = \sqrt{6} \cos \theta$$
.

giving your answers in terms of π .

(8)

2006, Question 2:

2. Given that $(\sin \theta + \cos \theta) \neq 0$, find all the solutions of

$$\frac{2\cos 2\theta(\sin 2\theta - \sqrt{3}\cos 2\theta)}{\sin \theta + \cos \theta} = \sqrt{6}(\sin 2\theta - \sqrt{3}\cos 2\theta)$$

for $0 \le \theta < 360^{\circ}$.

(10)

2007, Question 3:

3. (*a*) Solve, for $0 \le x \le 2\pi$,

$$\cos x + \cos 2x = 0. \tag{5}$$

(b) Find the exact value of $x, x \ge 0$, for which

$$\arccos x + \arccos 2x = \frac{\pi}{2}.$$
 (6)

[$\arccos x$ is an alternative notation for $\cos^{-1} x$.]

2008, Question 3:

3. (a) Prove that $\tan 15^{\circ} = 2 - \sqrt{3}$

(4)

(b) Solve, for $0 \le \theta < 360^{\circ}$,

$$\sin(\theta + 60^{\circ}) \sin(\theta - 60^{\circ}) = (1 - \sqrt{3}) \cos^{2} \theta$$
 (8)

2012, Question 2:

2. (a) Show that

$$\sin 3x = 3\sin x - 4\sin^3 x \tag{3}$$

Hence find

(b)
$$\int \cos x (6\sin x - 2\sin 3x)^{\frac{2}{3}} dx$$
 (3)

(c)
$$\int (3\sin 2x - 2\sin 3x \cos x)^{\frac{1}{3}} dx$$
 (4)

2012, Question 3:

3. The angle θ , $0 < \theta < \frac{\pi}{2}$, satisfies

$$\tan\theta\tan2\theta = \sum_{r=0}^{\infty} 2\cos^r 2\theta$$

(a) Show that $\tan \theta = 3^p$, where p is a rational number to be found.

(8)

(b) Hence show that $\frac{\pi}{6} < \theta < \frac{\pi}{4}$

(2)

2013, Question 2:

2. (a) Use the formula for $\sin(A - B)$ to show that $\sin(90^\circ - x) = \cos x$

(1)

(b) Solve for $0 < \theta < 360^{\circ}$

$$2\sin(\theta + 17^\circ) = \frac{\cos(\theta + 8^\circ)}{\cos(\theta + 17^\circ)}$$

(7)