Various Questions (From AEA Papers)

For answers, see the AEA website

2002, Question 6:

б.

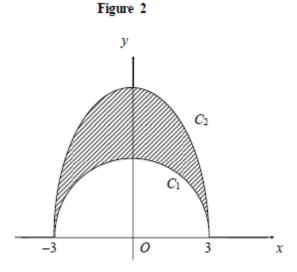


Figure 2 shows a sketch of part of two curves C_1 and C_2 for $y \ge 0$.

The equation of C_1 is $y = m_1 - x^{m_1}$ and the equation of C_2 is $y = m_2 - x^{m_2}$, where m_1 , m_2 , n_1 and n_2 are positive integers with $m_2 > m_1$.

Both C_1 and C_2 are symmetric about the line x = 0 and they both pass through the points (3, 0) and (-3, 0).

Given that $n_1 + n_2 = 12$, find

(a) the possible values of n_1 and n_2 ,

(4)

(b) the exact value of the smallest possible area between C_1 and C_2 , simplifying your answer,

(8)

(c) the largest value of x for which the gradients of the two curves can be the same. Leave your answer in surd form

(5)

2002, Question 7:

7.	A student	was attempting	to prove that	$\chi = \frac{1}{2}$	is the	only real	root of
----	-----------	----------------	---------------	----------------------	--------	-----------	---------

$$x^3 + \frac{3}{4}x - \frac{1}{2} = 0.$$

The attempted solution was as follows.

$$\chi^3 + \frac{3}{4}\chi = \frac{1}{2}$$

$$\therefore \qquad \qquad x(x^2 + \frac{3}{4}) = \frac{1}{2}$$

$$\therefore$$
 $x = \frac{1}{2}$

or
$$x^2 + \frac{3}{4} = \frac{1}{2}$$

ie.
$$x^2 = -\frac{1}{4}$$
 no solution

$$\therefore$$
 only real root is $x = \frac{1}{2}$

(a) Explain clearly the error in the above attempt.

(2)

(b) Give a correct proof that $x = \frac{1}{2}$ is the only real root of $x^3 + \frac{3}{4}x - \frac{1}{2} = 0$.

(3)

The equation

$$x^3 + \beta x - \alpha = 0 \tag{I}$$

where α , β are real, $\alpha \neq 0$, has a real root at $x = \alpha$.

(c) Find and simplify an expression for β in terms of α and prove that α is the only real root provided $|\alpha| < 2$.

(6)

An examiner chooses a positive number α so that α is the only real root of equation (I) but the incorrect method used by the student produces 3 distinct real "roots".

(d) Find the range of possible values for α .

(7)

2004, Question 3:

- 3. $f(x) = x^3 (k+4)x + 2k, \quad \text{where } k \text{ is a constant.}$
 - (a) Show that, for all values of k, the curve with equation y = f(x) passes through the point (2, 0).

(1)

(b) Find the values of k for which the equation f(x) = 0 has exactly two distinct roots.

(5)

Given that k > 0, that the x-axis is a tangent to the curve with equation y = f(x), and that the line y = p intersects the curve in three distinct points,

(c) find the set of values that p can take.

(5)

(3)

2004, Question 6:

6.
$$f(x) = x - [x], x \ge 0$$

where [x] is the largest integer $\leq x$.

For example, f(3.7) = 3.7 - 3 = 0.7; f(3) = 3 - 3 = 0.

(a) Sketch the graph of y = f(x) for $0 \le x < 4$.

(b) Find the value of p for which $\int_{2}^{p} f(x) dx = 0.18$. (3)

Given that

$$g(x) = \frac{1}{1+kx}, \quad x \ge 0, \quad k > 0,$$

and that $x_0 = \frac{1}{2}$ is a root of the equation f(x) = g(x),

(c) find the value of k.
(2)

(d) Add a sketch of the graph of y = g(x) to your answer to part (a).(1)

The root of f(x) = g(x) in the interval n < x < n + 1 is x_n , where n is an integer.

(e) Prove that

$$2x_n^2 - (2n-1)x_n - (n+1) = 0.$$
(4)

(f) Find the smallest value of n for which x_n − n < 0.05.</p>

(4)

2005, Question 1:

1. A point P lies on the curve with equation

$$x^2 + y^2 - 6x + 8y = 24$$
.

Find the greatest and least possible values of the length OP, where O is the origin.

(6)

2006, Question 4:

4. The line with equation y = mx is a tangent to the circle C_1 with equation

$$(x+4)^2 + (y-7)^2 = 13.$$

(a) Show that m satisfies the equation

$$3m^2 + 56m + 36 = 0. (4)$$

The tangents from the origin O to C_1 touch C_1 at the points A and B.

(b) Find the coordinates of the points A and B.

(8)

Another circle C_2 has equation $x^2 + y^2 = 13$. The tangents from the point (4, -7) to C_2 touch it at the points P and Q.

(c) Find the coordinates of either the point P or the point Q.

(2)

2010, Question 6:

6. (a) Given that $x^4 + y^4 = 1$, prove that $x^2 + y^2$ is a maximum when $x = \pm y$, and find the maximum and minimum values of $x^2 + y^2$.

(7)

(b) On the same diagram, sketch the curves C_1 and C_2 with equations $x^4 + y^4 = 1$ and $x^2 + y^2 = 1$ respectively.

(2)

(c) Write down the equation of the circle C_3 , centre the origin, which touches the curve C_1 at the points where $x = \pm y$.

(1)

2010, Question 7:

7.

$$f(x) = [1 + \cos(x + \frac{\pi}{4})][1 + \sin(x + \frac{\pi}{4})], \quad 0 \le x \le 2\pi$$

(a) Show that f(x) may be written in the form

$$f(x) = (\frac{1}{\sqrt{2}} + \cos x)^2, \qquad 0 \le x \le 2\pi$$
 (5)

(b) Find the range of the function f(x).

(2)

The graph of y = f(x) is shown in Figure 2.

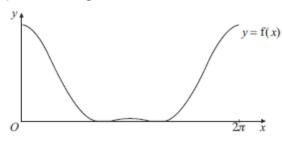


Figure 2

(c) Find the coordinates of all the maximum and minimum points on this curve.

(6)

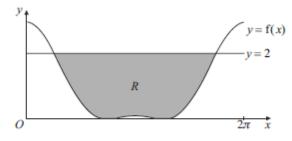


Figure 3

The region R, bounded by y=2 and y=f(x), is shown shaded in Figure 3.

(d) Find the area of R.

(8)

2014, Question 7:

7.

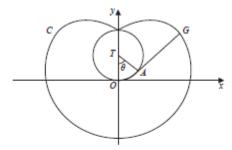


Figure 2

A circular tower stands in a large horizontal field of grass. A goat is attached to one end of a string and the other end of the string is attached to the fixed point O at the base of the tower. Taking the point O as the origin (0,0), the centre of the base of the tower is at the point T(0,1). The radius of the base of the tower is 1. The string has length π and you may ignore the size of the goat. The curve C represents the edge of the region that the goat can reach as shown in Figure 2.

(a) Write down the equation of C for y < 0.</p>

When the goat is at the point G(x, y), with x > 0 and y > 0, as shown in Figure 2, the string lies along OAG where OA is an arc of the circle with angle $OIA = \theta$ radians and AG is a tangent to the circle at A.

(b) With the aid of a suitable diagram show that

$$x = \sin \theta + (\pi - \theta) \cos \theta$$

 $y = 1 - \cos \theta + (\pi - \theta) \sin \theta$ (5)

(8)

(c) By considering $\int y \frac{\mathrm{d}x}{\mathrm{d}\theta} \, \mathrm{d}\theta$, show that the area between C, the positive x-axis and the positive y-axis can be expressed in the form

$$\int_{0}^{\pi} u \sin u \, du + \int_{0}^{\pi} u^{2} \sin^{2} u \, du + \int_{0}^{\pi} u \sin u \cos u \, du$$
(5)

(d) Show that
$$\int_{0}^{\pi} u^{2} \sin^{2} u \, du = \frac{\pi^{3}}{6} + \int_{0}^{\pi} u \sin u \cos u \, du$$
 (4)

(e) Hence find the area of grass that can be reached by the goat.