Binomial Expansion Questions (From the Oxford MAT Tests)

For answers, see the MAT website

Specimen A, Question 1i:

I. The power of x which has the greatest coefficient in the expansion of $\left(1+\frac{1}{2}x\right)^{10}$ is

- (a) x^2
- (b) x^{3}
- (c) x^5
- (d) x^{10}

Specimen B, Question 1h:

H. The equation

$$(x^2+1)^{10} = 2x - x^2 - 2$$

- (a) has x = 2 as a solution;
- (b) has no real solutions;
- (c) has an odd number of real solutions;
- (d) has twenty real solutions.

2008, Question 1e:

E. The highest power of x in

$$\left\{ \left[\left(2x^6 + 7 \right)^3 + \left(3x^8 - 12 \right)^4 \right]^5 + \left[\left(3x^5 - 12x^2 \right)^5 + \left(x^7 + 6 \right)^4 \right]^6 \right\}^3$$

is

- (a) x^{424} , (b) x^{450} , (c) x^{500} , (d) x^{504} .

2013, Question 1e:

E. The expression

$$\frac{d^{2}}{dx^{2}} \left[(2x-1)^{4} (1-x)^{5} \right] + \frac{d}{dx} \left[(2x+1)^{4} (3x^{2}-2)^{2} \right]$$

is a polynomial of degree

- (a)
- 9; (b) 8; (c) 7;
- (d) less than 7.

2014, Question 1g:

G. Let n be a positive integer. The coefficient of x^3y^5 in the expansion of

$$(1+xy+y^2)^n$$

equals

- (a) n, (b) 2^n , (c) $\binom{n}{3}\binom{n}{5}$, (d) $4\binom{n}{4}$, (e) $\binom{n}{8}$.