

22. Given that $S = (x + 20) + (x + 21) + (x + 22) + \dots + (x + 100)$, where x is a positive integer, what is the smallest value of x such that S is a perfect square?

A 1

B 2

C 4

D 8

E 64

0592

©UKMT

22. C There are 81 terms in the series, so, using the formula $S = \frac{1}{2}n(a+l)$ for an arithmetic series:

$$S = \frac{81}{2}(x + 20 + x + 100) = 81(x + 60).$$

Now 81 is a perfect square, so S is a perfect square if and only if x + 60 is a perfect square. As x is a positive integer, the smallest possible value of x is 4.