

20. A positive number $a = [a] + \{a\}$ where [a] is the integer part of a and $\{a\}$ is the fractional part of a.

Given that $x + [y] + \{z\} = 4.2$, $y + [z] + \{x\} = 3.6$, $z + [x] + \{y\} = 2.0$, and x, y, z > 0, what is the value of $\{y\}$?

- A 0.1
- B 0.3
- C 0.5
- D 0.7
- E 0.9

0690

©UKMT

20. Adding all three equations: $x + [y] + \{z\} + y + [z] + \{x\} + z + [x] + \{y\} = 4.2 + 3.6 + 2.0 = 9.8$. Now $[x] + \{x\} = x$, $[y] + \{y\} = y$, $[z] + \{z\} = z$, so 2x + 2y + 2z = 9.8, that is x + y + z = 4.9. Therefore: $x + y + z - (x + [y] + \{z\}) = 4.9 - 4.2$, that is $\{y\} + [z] = 0.7$. So [z] = 0, $\{y\} = 0.7$.

(It is not necessary to find the values of x, y, z to solve this problem, but their values may be shown to be 1.9, 2.7, 0.3 respectively.)