

20. A triangle is cut from the corner of a rectangle. The resulting pentagon has sides of length 8, 10, 13, 15 and 20 units, though not necessarily in that order. What is the area of the pentagon?

A 252.5

B 260

C 270

D 275.5

E 282.5

0790

©UKMT

20. C The diagram shows the original rectangle with the corner cut from it to form a pentagon. It may be deduced that the length of the original rectangle is 20 and that a, b, c, d are 8, 10, 13, 15 in some order.

a ______d

By Pythagoras' Theorem $c^2 = (20 - b)^2 + (a - d)^2$. So c cannot be 8 as there is no right-angled triangle having integer

sides and hypotenuse 8. If c = 10, then (20 - b) and (a - d) are 6 and 8 in some order, but this is not possible using values of 8, 13 and 15. Similarly, if c = 15, then (20 - b) and (a - d) are 9 and 12 in some order, but this is not possible using values of 8, 10 and 13. However, if c = 13, then (20 - b) and (a - d) are 5 and 12 in some order, which is true if and only if a = 15, b = 8, d = 10.

So the area of the pentagon is $20 \times 15 - \frac{1}{2} \times 5 \times 12 = 270$.