
The diagram shows four semicircles symmetrically placed 20. between two circles. The shaded circle has area 4 and each semicircle has area 18. What is the area of the outer circle?

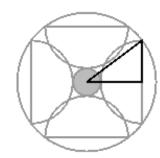
A 72 2

В 100 C 98

D 96

E 32√3

0890



©UKMT

20. Let r_1 , r_2 and r_3 be the radii of the shaded circle, semicircles and В outer circle respectively. A right-angled triangle can be formed with sides r_3 , $(r_1 + r_2)$ and r_2 .

Hence, by Pythagoras' Theorem, $r_3^2 = (r_1 + r_2)^2 + r_2^2$.

Now $\pi r_1^2 = 4$, hence $r_1 = 2/\sqrt{\pi}$. Likewise $r_2 = 6/\sqrt{\pi}$. Hence $r_2 = 3r_1$ so that $r_3^2 = (r_1 + 3r_1)^2 + (3r_1)^2 = 25r_1^2$. Thus the required area is $25 \times 4 = 100$.

