

21. A frustum is the solid obtained by slicing a right-circular cone perpendicular to its axis and removing the small cone above the slice. This leaves a shape with two circular faces and a curved surface. The original cone has base radius 6 cm and height 8 cm, and the curved surface area of the frustum is equal to the area of the two circles. What is the height of the frustum?

- A 3 cm
- B 4cm
- C 5 cm
- D 6cm
- E 7 cm

0991

©UKMT

21. B Let r be the radius of the small cone and h the height.

Let l_1 and l_2 be the slant heights of the small and large cones respectively.

By Pythagoras' Theorem $l_2 = \sqrt{6^2 + 8^2} = 10$.

Using similar triangles, $\frac{l_1}{r} = \frac{10}{6}$ so $l_1 = \frac{5}{3}r$ and $\frac{h}{8} = \frac{r}{6}$ giving $h = \frac{4}{3}r$.

Thus the area of the curved surface of the frustum is

$$\pi \times 6 \times 10 - \pi \times r \times \frac{5}{3} \times r = \pi \left(60 - \frac{5r^2}{3}\right).$$

The sum of the areas of the two circles is $\pi \times 6^2 + \pi \times r^2 = \pi (36 + r^2)$.

Hence
$$\pi \left(60 - \frac{5r^2}{3} \right) = \pi \left(36 + r^2 \right)$$
 and so $24 = \frac{8r^2}{3}$ giving $r = 3$, so $h = \frac{4}{3} \times 3 = 4$.

Therefore, in cms, the height of the frustum is 8 - 4 = 4.