

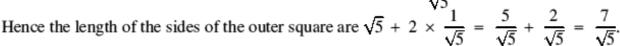
A figure in the shape of a cross is made from five 1×1 squares, as 24. shown. The cross is inscribed in a large square whose sides are parallel to the dashed square, formed by four of the vertices of the cross. What is the area of the large outer square?

B $\frac{49}{5}$ C 10 D $\frac{81}{8}$ E $\frac{32}{3}$

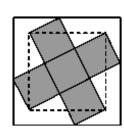
0994

©UKMT

A shaded triangle is congruent to an unshaded triangle (ASA). 24. В


Hence the area of the dashed square is equal to the area of the cross and both are 5.

Thus the side-length of the dashed square is $\sqrt{5}$.


Hence the sides of a shaded triangle are: $\frac{1}{2}$, 1 and $\frac{1}{2}\sqrt{5}$.

Now the perpendicular distance between the squares is equal to the altitude, h, of the shaded triangle. The area of such a triangle is

$$\frac{1}{2} \times (\frac{1}{2} \times 1) = \frac{1}{4}$$
 so that $\frac{1}{2} \times (\frac{1}{2}\sqrt{5} \times h) = \frac{1}{4}$ which gives $h = \frac{1}{\sqrt{5}}$.

Thus the area of the large square is $\left(\frac{7}{\sqrt{5}}\right)^2 = \frac{49}{5}$.

