

25. All the digits of a number are different, the first digit is not zero, and the sum of the digits is 36. There are $N \times 7!$ such numbers. What is the value of N?

A 72

B 97

C 104

D 107

E 128

1095

©UKMT

25. D The sum of 10 different digits is 45. As the sum of the digits in the question is 36 then digits adding to 9 are omitted.

The combinations of digits satisfying this are:

9;
$$1+8$$
; $2+7$; $3+6$; $4+5$; $1+2+6$; $1+3+5$; $2+3+4$.

When '0' is not involved there are $(8! + 4 \times 7! + 3 \times 6!)$ numbers, whereas when '0' is used there are $(8 \times 8! + 4 \times 7 \times 7! + 3 \times 6 \times 6!)$.

This gives a total of $9 \times 8! + (4 + 28) \times 7! + (3 + 18) \times 6! = (72 + 32 + 3) \times 7! = 107 \times 7!$ Hence N = 107.