

10. A triangle has two edges of length 5. What length should be chosen for the third side of the triangle so as to maximise the area within the triangle?

A 5

B 6

C $5\sqrt{2}$

D 8

E $5\sqrt{3}$

1180

©UKMT

10. C The area of a triangle is $\frac{1}{2}ab \sin C$. The maximum area is attained when $\angle C = 90^{\circ}$. Hence, in order to maximise the area, the triangle must be right-angled with common side lengths equal to 5. Let x be the side length of the hypotenuse, so, by Pythagoras' Theorem, $x^2 = 5^2 + 5^2 = 50$. Thus $x = 5\sqrt{2}$ is the length that should be chosen.