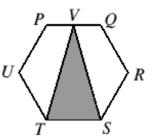


- PQRSTU is a regular hexagon and V is the midpoint of PQ. 11. What fraction of the area of PQRSTU is the area of triangle STV?
- B $\frac{2}{15}$ C $\frac{1}{3}$ D $\frac{2}{5}$

1181



©UKMT

Let x be the side length of the regular hexagon PQRSTU and let 11. h = PT = QS, the perpendicular height of triangle STV. Thus the area of triangle STV is $\frac{1}{2}xh$ and the areas of triangles PTV and QSV are both $\frac{1}{2}(\frac{1}{2}xh) = \frac{1}{4}xh$. The perpendicular heights of triangles PTU and QRS are

$$\frac{UR - PQ}{2} = \frac{2x - x}{2} = \frac{x}{2}.$$

Hence the area of each of triangles PTU and QRS is $\frac{1}{2}h \times \frac{1}{2}x = \frac{1}{4}hx$. Therefore the area of triangle STV is one third of the area of PQRSTU.

