

An equilateral triangle of side length 4 cm is divided into smaller equilateral triangles, all of 14. which have side length equal to a whole number of centimetres. Which of the following cannot be the number of smaller triangles obtained?

B 8

D 13

E 16

1184

©UKMT

Let us define T_n to represent an equilateral triangle with side length n cm. Then an equilateral 14. triangle of side length 4 cm can be divided into smaller equilateral triangles as follows:

$$1 \times T_3$$
 and $7 \times T_1$ $4 \times T_2$
 $2 \times T_2$ and $8 \times T_1$ $1 \times T_2$ and $12 \times T_1$

$$4 \times T_2$$

$$3 \times T_2$$
 and $4 \times T_1$

$$2 \times T_2$$
 and $8 \times T_1$

$$1 \times T_2$$
 and $12 \times T$

$$16 \times T_1$$
.

The number of triangles used are: 8, 4, 7, 10, 13 and 16. So it is not possible to dissect the original triangle into 12 triangles.