



19. Let S be a set of five different positive integers, the largest of which is m. It is impossible to construct a quadrilateral with non-zero area, whose side-lengths are all distinct elements of S. What is the smallest possible value of m?

A 2

B 4

C 9

D 11

E 12

1689



©UKMT

19. D Let S consist of h, j, k, l, m in ascending order of size. We want m to be as small as possible. Given three side-lengths, there is a quadrilateral with non-zero area with a specified fourth side-length if and only if the fourth side-length is less than the sum of the other three side-lengths. To ensure that j, k, l, m are not the side-lengths of such a quadrilateral, we must have m ≥ j + k + l. Likewise, considering h, j, k, l, we must have l ≥ h + j + k. Since the smallest possible values of h, j and k are 1, 2 and 3 respectively then l ≥ 1 + 2 + 3 so 6 is the smallest value of l. Also m ≥ 2 + 3 + 6 so 11 is the smallest value of m.